Эскизная компановка вала




ПРАКТИЧЕСКАКЯ РАБОТА № 7

 

 

Вал – деталь машины, предназначенная для передачи крутящего момента и поддержания вращающихся вместе с ним деталей передач (зубчатых колёс, шкивов, звёздочек и др.). Некоторые валы (гибкие, трансмиссионные, торсионные) не поддерживают вращающиеся детали. Так как передача крутящих моментов связана с возникновением сил, действующих на валы от посаженных на них деталей и опор, валы обычно подвержены действию, кроме крутящих моментов, также поперечным силам и изгибающим моментам.

По форме геометрической оси валы бывают прямые (наиболее широко распространены), коленчатые (валы машин с возвратно-поступательным движением звеньев) и гибкие (валы с изменяемой формой геометрической оси). Гибкие валы применяются для передачи крутящего момента от деталей с пересекающимися осями.

Ось – деталь, предназначенная для поддержания вращающихся деталей, но не передающая полезные крутящие моменты. Оси обычно подвергаются воздействию изгибающих моментов. Возникающими в ряде случаев деформациями растяжения, сжатия и кручения от моментов сил трения пренебрегают. Оси могут быть вращающимися и неподвижными.

По конструкции прямые валы и оси выполняют гладкими и ступенчатыми, сплошными и полыми. Образование ступеней связано с закреплением деталей или самого вала в осевом направлении, а также с возможностью монтажа деталей при посадках с натягом. Полые валы изготавливают для уменьшения массы или для размещения в них других деталей. Например, при отношении внутреннего диаметра do к наружному d, равном 0,75, при одинаковой прочности масса полого вала в два раза меньше массы сплошного.

Опорная часть вала или оси (рис. 3.44) называется цапфой. Концевая цапфа называется шипом, а промежуточная – шейкой. Часть вала, предназначенная для восприятия осевой нагрузки – пята. По форме цапфы могут быть цилиндрическими, коническими, шаровыми и плоскими (пяты).

Основное применение имеют цилиндрические цапфы. Конические цапфы применяют для регулирования зазора в подшипниках и осевого фиксирования вала. Сферические (шаровые) цапфы из-за трудности их изготовления применяют только при необходимости значительных угловых смещений оси.

 

Рис. 3.44. Опорные части вала и оси

Кольцевое утолщение вала, составляющее с ним одно целое, называется буртиком.

Посадочные поверхности валов и осей под ступицы насаживаемых деталей выполняют цилиндрическими и коническими. При посадках с натягом диаметр этих поверхностей принимают больше соседних участков для удобства сборки и снижения концентрации напряжения. Конические концы валов изготавливают с конусностью 1:10. Их применяют для облегчения монтажа и демонтажа.

Конструктивные элементы валов

Конструкция валов определяется деталями, которые на них размещаются и расположением опор.

При конструировании валов и осей принимают во внимание технологию сборки и разборки, механическую обработку, расход материала и пр.

В конструкции ступенчатого вала условно выделяют следующие элементы: концевые участки; участки перехода от одной ступени к другой; места посадки подшипников, уплотнений и деталей, передающих момент вращения. Каждый элемент имеет свое название (рисунок 3).

Цапфа (Ц) участок вала (оси), которым он опирается на подшипник.

Шипом называется цапфа, расположенная на конце вала (оси) и предназначенная для восприятия, в основном, радиальной нагрузки.

Пятой называется цапфа, расположенная на конце вала (оси) и предназначенная для восприятия, в основном, осевой нагрузки.

Шейкой называется промежуточная цапфа, расположенная в средней части вала (оси).

Заплечик (З) переходная торцевая поверхность от одного сечения вала (оси) к другому, предназначенная для упора деталей, установленных на валу или оси.

Рис.3. Элементы валов

 

Буртик (Б) кольцевые утолщения вала (оси), составляющее одно целое с валом (осью).

Канавка (К) углубление на поверхности меньшего диаметра между соседними ступенями валов: предназначена для плотного прилегания насаживаемой детали к заплечику (буртику), выхода шлифовального круга, при обработке поверхности меньшего диаметра, выхода резьбонарезного инструмента. Эти канавки повышают концентрацию напряжений.

Галтель (Г) криволинейнаяповерхность плавного перехода от меньшего сечения вала (оси), к плоской части заплечика или буртика.

Фаска (Ф) скошенная часть боковой поверхности вала (оси) у торца вала (оси), заплечика, буртика. Служит для облегчения сборки и предотвращения травмирования рук.

Радиусы закруглений галтелей, размеры фасок принимают по ГОСТ 12080-66 в зависимости от диаметра вала.

Шпоночный паз (Ш) углубление в валах для установки шпонок. Выполняют на участках крепления деталей, передающих вращающий момент.

Размеры шпоночных пазов принимают по ГОСТ 23360-78.

Благодаря массовому применению валов и осей в механизмах, для них выработаны нормативы на выполнение различных конструктивных элементов.

Расчет валов Расчет валов проводится в два этапа: проектировочный только под действием крутящего момента и проверочный расчет с учетом крутяще­го и изгибающего моментов.

1. Проектировочный (предварительный) расчет вала проводят по формуле , где МК - крутящий момент, МК = Т; Т - вращающий момент на валу; d - диаметр вала; - допускаемое напряжение при кручении, = 20... 30 МПа.

Проверочный расчет спроектированного вала проводят по сопротивлению усталости и на жесткость. Предварительно определяют все конструктивные элементы вала, обработку и качество поверхности отдельных участков. Составляется расчетная схема вала и наносятся действующие нагрузки.

2. Проверочный уточненный расчет на сопротивление усталости заключается в определении расчетных коэффициентов запаса прочности в опасных сечениях, выявленных по эпюрам моментов с учетом кон­центрации напряжений.

Принимают, что напряжение изгиба меняется по симметричномуциклу (см. рис. 11.3, а), а напряжение кручения - по отнулевому (см рис. 11.3, 6).

Амплитуда цикла изменения напряжений изгиба вала

, где МИ - изгибающий момент;

Амплитуда отнулевого цикла изменения напряжений кручения

где - момент сопротивления кручению и изгибу сечений вала соответственно.

Расчет осей ведут только на изгиб: при расчете неподвижных осей принимают изменения напряжений по отнулевому циклу, при расчете подвижных - по симметричному.

.3 Упрощенный проверочный расчет на усталость проводят в предпо­ложении, что нормальные напряжения)изгиба) и касательные напря­жения (кручение) симметричному циклу. Одновременное действие крутящего и изгибающего моментов рассчитывается по гипо­тезе наибольших касательных напряжений , где Ми - суммарный изгибающий момент, геометрическая сумма изги­бающих моментов в вертикальн ой и горизонт альной плоскостях:

Условие сопротивления усталости

, где - эквивалентные напряжения в сечении; М экв - эквивалентный момент в сечении; d - диаметр вала в сечении;

-допускаемое напряжение изгиба при симметричном цикле изменения напряжений.

РАСЧЕТ ВАЛА

Расчет жестких валов на совместное действие изгиба с кручением рассмотрим на конкретном примере. Расчетная схема и эпюры изгибающих и крутящего момента приведены на рис.4.29.

Дано: Т1 = 120 Н*м; Р = 3000 Н; Рr = 1100 Н; Ра = 530 Н; l = 90 мм; d = 80 мм. Материал вала сталь 40Х, термообработка – закалка + отпуск σВ = 980 МПа.

Решение:

Валы – это тяжелонагруженные детали, работающие в сложном динамическом режиме. Поэтому коэффициент запаса прочности принимается в пределах 4…10. В нашем случае примем n = 5. Тогда [σ] = σВ/ n = 980/5 =

= 196 МПа; [τ] = 0,5[σ] = 196/2 = 98 МПа.

Реакции опор в горизонтальной плоскости равны:

Rх1 = Rх2 = Р/2 = 3000/2 = 1500 Н.

Рис. 4.29

Реакции опор в вертикальной плоскости равны:

Ry1 = (Рr* l + Ра* d/2)/2 l = (1100*90 + 530*40)/180 = 668 Н.

Ry2 = (Рr* l - Ра* d/2)/2 l = (1100*90 - 530*40)/180 = 432 Н.

Максимальный изгибающий момент в горизонтальной плоскости равен:

Тy = Rх1* l = 1500*90 = 135*103 Н*мм = 135 Н*м.

Изгибающие моменты в вертикальной плоскости равны:

Тx1 = Ry1* l = 668*90 = 60,12*103 Н*мм = 60,12 Н*м;

Тx2 = Ry2* l = 432*90 = 38,88*103 Н*мм = 38,88 Н*м.

Ткр = Т1 = 120 Н*м.

 

Суммарный изгибающий момент равен:

Ти = √ Тх2 + Ту12 = √ 1352 + 60,122 = 148 Н*м.

Приведенный или эквивалентный момент вычисляют по третьей теории прочности:

Тэкв = √ Ти2 + Ткр2 = √1482 + 1202 = 190,5 Н*м.

Диаметр вала определяется по формуле

(4.42)

= = 21,3 мм.

Ближайший больший стандартный диаметр 22 мм.

При сравнительно коротких валах валы рассчитывают только на кручение. При этом допустимое касательное напряжение принимают заниженным, на мой взгляд не обоснованно. Так в проектировании предлагается [τ] = 20…25 МПа.

Диаметр вала определяется по формуле

(4.43)

В нашем примере = 18,3 мм.

При [τ] = 25 МПа = 28,8 мм. Получили диаметр больший, чем при совместном действии изгиба с кручением, то есть допустимое напряжение явно занижено.

 

ВОПРОСЫ

1. Дайте определение понятия «вал».

2. Дайте определение понятия «ось».

3. Объясните в чем разница между валом и осью.

4. Перечислите виды валов по геометрическим признакам.

5. Каково назначение кривошипных, коленчатых, гибких валов? Приведите пример использования этих валов.

6. Перечислите виды валов по конструктивным признакам.

7. Чем вызвано наибольшее распространение ступенчатых валов?

8. Перечислите виды валов по типу сечения.

9. Чем вызвана необходимость изготовления полых валов?

10. Чем определяется конструкция валов?

11. Дайте определение понятиям: цапфа, шип, пята, шейка, заплечик, буртик, канавка, галтель, фаска, шпоночный паз.

12. Объясните в чем разница между заплечиком и буртиком?

13. Объясните в чем разница между шипом, пятой и шейкой?

14. Перечислите материалы для изготовления валов и осей.

 

15. Каким силовым воздействиям подвержены валы, а каким оси?

16. Какие виды валов бывают в зависимости от формы геометрической оси?

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-10-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: