Неинвертирующий усилитель




Неинвертирующий усилитель — это, пожалуй, одним из трех самых элементарных схем аналоговой электроники, наряду со схемами инвертирующего усилителя и повторителя напряжения. Он даже проще чем инвертирующий усилитель, поскольку для работы схемы не нужно двухполярное питание.

В первую очередь мы должны подумать о том, какие напряжения присутствуют на обоих входах нашего операционного усилителя. Вспомним первое из правил, которое описывает работу операционного усилителя:

Правило №1 — операционный усилитель оказывает воздействие своим выходом на вход через ООС (отрицательная обратная связь), в результате чего напряжения на обоих входах, как на инвертирующем (-), так и на неинвертирующем (+) выравнивается.

То есть, напряжение на инвертирующем входе составляет 3В. На следующем этапе давайте рассмотрим резистор сопротивлением 10k. Мы знаем, какое напряжение на нем и его сопротивление, а значит, из закона Ома мы можем вычислить какой ток течет через него:

I = U/R = 3В/10k = 300мкА.

Этот ток, согласно правилу 2, не может быть взят с инвертирующего входа (-), таким образом, он идет с выхода усилителя.

Правило №2 — входы усилителя не потребляют ток

Ток 300мкА протекает также через резистор сопротивлением 20к. Напряжение на нем мы легко вычислим с помощью закона Ома:U = IR = 300мкА * 20к = 6В

Получается, что это напряжение и есть выходное напряжение усилителя? Не, это не так. Напомним, что резистор 20к на одном из своих выводов имеет напряжение 3В. Обратите внимание, как направлены напряжения на обоих резисторах. Ток течет в направлении противоположном направлению стрелки, символизирующей точку с более высоким напряжением. Поэтому к рассчитанным 6В нужно добавить еще 3В на входе. В таком случае конечный результат будет 9В.

В заключение мы должны проверить полученный результат с последним правилом:

Правило №3 — напряжения на входах и выходе должны быть в диапазоне между положительным и отрицательным напряжением питания ОУ.

То есть на необходимо проверить, что рассчитанное нами напряжение можно получить реально. Часто начинающие думают, что усилитель работает как «Perpetuum Mobile», и вырабатывает напряжение из ничего. Но надо помнить, что для работы усилителя также нужно питание.

Повторитель напряжения

Повторитель напряжения — это самый простой из возможных усилителей, обладающих отрицательной обратной связью (ООС). Выходное напряжение точно равно входному напряжению. Если оно ничем не отличаются, то вы можете спросить — зачем это нужно, если от этого ничего не изменяется? Суть в том, что речь идет о напряжении, а не о токе. Так вот, повторитель напряжения почти не потребляет тока от источника сигнала, и позволяет получить довольно высокий ток со своего выхода. Нам часто приходится иметь дело с активными радиокомпонентами, которые имеют очень малый выходной ток. Примером такого компонента является микрофон или фототранзистор. Подключение к ним элементов с низким сопротивлением приведет к уменьшению напряжения выходного сигнала, генерируемого этими источники. В такой ситуации имеет смысл использовать повторитель напряжения. Он имеет высокое входное сопротивление, поэтому он не снижает и не искажает входной сигнал, а так же обладает низким выходным сопротивлением, что позволяет подключить энергоемкие компоненты, например, светодиод.

Повторитель напряжения на ОУ. Принцип работы Чтобы понять, как работает повторитель напряжения, мы должны знать три элементарных правила, определяющие работу операционного усилителя:

 

Правило №1 — операционный усилитель оказывает воздействие своим выходом на вход через ООС (отрицательная обратная связь), в результате чего напряжения на обоих входах, как на инвертирующем (-), так и на неинвертирующем (+) выравнивается.

Правило №2 — входы усилителя не потребляют ток

Правило №3 — напряжения на входах и выходе должны быть в диапазоне между положительным и отрицательным напряжением питания ОУ.

Предположим, что входное напряжение стало 3В, а в настоящее время на выходе у нас 1В. Что произойдет? Усилитель определяет, что между инвертирующим входом (-) и неинвертирующим (+) разница составляет 2В.

Поэтому, в соответствии с правилом №1, выходное напряжение увеличивается тех пор, пока напряжения на входах не сравняют. Ситуацию дополнительно упрощает тот факт, что выход соединен непосредственно с инвертирующим входом (-), и это неизбежно приводит к тому, что напряжение на этих двух выводах становиться одинаковым.

Часто, в схеме повторителя напряжения, можно встретить дополнительный резистор в цепи обратной связи. Он необходим там, где требуется повышенная точность. Правила №1 и №2 относятся к идеальному операционному усилителю, которого в реальности нет.

Напряжения на входах не могут быть идеально одинаковыми, через них протекает небольшой ток, поэтому напряжение на выходе может отличаться от входного напряжения на несколько милливольт. Резистор R предназначен для уменьшения влияния этих недостатков. Он должен иметь сопротивление равное сопротивлению источника сигнала.

15) Назначение вторичных источников питания (ВИП) – преобразование сетевого напряжения в постоянные напряжения заданных номиналов, необходимые для обеспечения работоспособности электронных схем. Можно выделить две основные структурные схемы ВИП: классическую (сетевой трансформатор-выпрямитель-фильтр-стабилизатор постоянного напряжения) и импульсную (выпрямитель сетевого напряжения - высокочастотный преобразователь в импульсные напряжения необходимых номиналов – выпрямитель импульсного напряжения – сглаживающий фильтр – стабилизатор постоянного напряжения). Классическая схема, обладая простотой реализации, имеет существенный недостаток – громоздкий сетевой трансформатор, поэтому в настоящее время широкое применение получили импульсные ВИП, которые несмотря на большее число структурных блоков, в целом имеют меньшие габариты и вес поскольку эти параметры у высокочастотных трансформаторов на ферритовых сердечниках несравнимо лучше чем у сетевых трансформаторов с сердечниками из электротехнической стали. Структурная схема классического ВИП представлена на рис.81.

Простейший выпрямитель Временные диаграммы

Однофазный однополупериодный выпрямитель

Схема однофазного управляемогооднополупериодного выпрямителя

   
 
 
 

Однофазные выпрямители

Выпрямитель — это устройство, предназначенное для преобразования входною переменного напряжения в постоянное. Основным блоком выпрямителя является вен пильный комплект, который непосредственно выполняет преобразования переменного напряжения в постоянное.

 

16) Компаратор (аналоговых сигналов) (англ. comparator — сравнивающее устройство0%9A%D0%BE%D0%BC%D0%BF%D0%B0%D1%80%D0%B0%D1%82%D0%BE%D1%80"[1]) — электронная схема, принимающая на свои входы два аналоговых сигнала и выдающая логическую «1», если сигнал на прямом входе («+») больше, чем на инверсном входе («−»), и логический «0», если сигнал на прямом входе меньше, чем на инверсном входе.

Одно напряжение сравнения двоичного компаратора делит весь диапазон входных напряжений на два поддиапазона. Двоичный логический сигнал (0%91%D0%B8%D1%82"бит) на выходе двоичного компаратора указывает, в каком из двух поддиапазонов находится входное напряжение.

В аналитическом виде однопороговый компаратор задаётся следующей системой неравенств:

 

где:
Uref - напряжение порога сравнения,
Uout - выходное напряжение компаратора
Uin - входное напряжение на компараторе.

 

Аналоговый компаратор на 0%9E%D0%BF%D0%B5%D1%80%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D1%83%D1%81%D0%B8%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C"операционном усилителе

Компараторы, построенные на двух дифференциальных усилителях, можно условно разделить на двухвходовые и трёхвходовые. Двухвходовые компараторы применяются в тех случаях, когда сигнал изменяется достаточно быстро (не вызывает быстрых переключений состояния выхода, и на выходе генерируют один из потенциалов, которыми запитаны операционные усилители (как правило — +5В или 0В).

Двухпороговый (троичный) компаратор Двухпороговый (троичный) компаратор0%9A%D0%BE%D0%BC%D0%BF%D0%B0%D1%80%D0%B0%D1%82%D0%BE%D1%80"[2] имеет два напряжения сравнения и состоит из двух обычных компараторов.

 

Генератор импульсов (ГИ), или импульсный генератор, – это прибор (устройство), преобразующие энергию постоянного или переменного источника напряжения в энергию электрических импульсов, которые обычно имеют прямоугольную форму.

ГИ используются в большом количестве схем и устройств, а также применяются для наладки и ремонта разнообразных цифровых устройств в области измерительной техники.

 

Генератор импульсов: классификация

По выходной последовательности основных импульсов различают приборы, генерирующие:

одиночные импульсы;

​парные импульсы;

кодовые пакеты;

кодовые комбинации;

псевдослучайные последовательности импульсов программного и ручного управления параметрами.

 

По числу каналов выделяются генераторы:

одноканальные;

многоканальные.

Мультивибра́тор — релаксационный генератор электрических прямоугольных колебаний с короткими фронтами

Схема

Существуют три типа мультивибраторов в зависимости от режима работы:

нестабильный, автоколебательный или астабильный: устройство непрерывно генерирует колебания и самопроизвольно переходит из одного состояния в другое

моностабильный: одно из состояний является стабильным, но другое состояние неустойчиво (переходное).

бистабильный: мультивибратор устойчив в любом из двух состояний и может быть переключён из одного состояния в другое подачей внешних импульсов.

 

17) Генераторы синусоидальных колебаний

Данная группа генераторов предназначена для получения колебаний синусоидальной формы требуемой частоты. Их работа основана на принципе самовозбуждения усилителя,охваченного положительной обратной связью

LC-генераторы

На рис.1.2 показана схема LC-генератора c трансформаторной связью, которая представляет собой усилительный каскад, выполненный по схеме с общим эмиттером. В качестве коллекторной нагрузки используется резонансный LC-контур с высокой добротностью.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: