Исследование устойчивости периодического решения




Составим уравнения первого приближения, порождаемое решением (8). Сделаем замену: x = Ф(t) + x; в уравнении (1) при этом отбросим члены, содержащие квадраты и высшие степени x и x'.

 
 

 

Воспользуемся тем фактом, что Ф (t) - решение уравнения. Получим уравнение первого приближения:

 
 

Это линейное дифференциальное уравнение с периодическими коэффициентами. Его решение мы будем искать в виде функции времени Удовлетворяют тому же уравнению, что и x, то есть (10). Начальные условия для них определены следующим образом.

; аналогичным образом можно показать, что (11).

Представим правую часть уравнения в виде степенного ряда по m.

 

будем искать в виде: (12).

Подставим (12) в (10) и сравнивая коэффициенты при соответствующих степенях m, получим:

Начальные условия для Ао, Во, …. Следует выбрать так, чтобы выполнялись условия (11). Действительно подставляя (11) в (12) и сравнивая коэффициенты при соответствующих степенях m, получим

Для В'о и Во аналогично. Для остальных же как видно из уравнений условия будут нулевые. Итак:

(14)

Решение (13) можно найти при помощи квадратур:

(15)

Если вспомнить общую теорию линейных диффуров с периодическими коэффициентами, то общее решение (10) имеет вид:

S1, S2 - периодические функции с тем же периодом, что и Ф (t). a1, a2 - характеристические показатели.

Если все , т.е. колебания затухают, то в этом случае выполняется теорема, доказанная Ляпуновым, относительно того, что периодическое решение уравнения первого приближения вполне устойчиво. Согласно Пуанкаре характеристические показатели можно определить из следующего уравнения:

 

=0 (16) Полагаем ;

 

 

Тогда определитель будет:

 

Вопрос об устойчивости, как сказано выше, решается знаком Re (a), или что все равно ÷ l÷. Если ÷ l÷ < 1 имеет место устойчивость ÷ l÷ = 1 этот случай для нашей задачи не представляет интереса. ÷ l÷> 1 имеет место неустойчивость.

При рассмотрении (18) имеют место 2 случая q > р2; q < р2; В первом случае l-комплексные; ½l2 ½=q; (20) если q<1; устойчивость q>1 - неустойчивость.

Случай второй - l - действительные: ; (21) устойчивость соответствует p и q нетрудно получить в виде рядов по степени m из формул (19) (12).

(22)

Если принять во внимание (15)

(22a)

(23)

Мы видим, что при достаточно малом m и w¹n; n ' Z вопрос об устойчивости решается величиной q и следовательно знаком b, если b < 0- имеет место устойчивость, b > 0 - неустойчивость.

В нашем случае b имеет вид:

(23a)

 

§ 3 Отыскание периодического решения в области резонанса.

Тогда l=mlо; w2 = 1+ aо m, (24) (aо , m - расстройка, реальный физический резонанс наступает при aо ¹ 0).

Тогда исследуемое уравнение имеет вид:

(25)

При m = 0 периодическое решение будет иметь вид: (26)

Следуя Пуанкаре, мы можем предположить периодическое решение в виде:

(27);

Начальные условия возьмем как и раньше:

Аналогично тому, как мы это делали в предыдущих параграфах. Подставляем (27) в (25) и, сравнивая коэффициенты при b1 b2, m и других интересующих нас величинах, получим уравнение, которым удовлетворяет A, B, C, D, E, F. Начальные условия для этих уравнений определим, если подставим (28) в (27).

(29)

Запишем условия периодичности для (27):

Делим на m:

(30a)

Необходимым условием существования периодического решения является:

Эти уравнения определяют P и Q решения (26), в близости к которому устанавливается периодическое решение. Они могут быть записаны в раскрытой форме:

 

(31)

Для существования искомого периодического решения достаточно неравенство 0 детерминанта: (см. § 1).

D, Е и их производные найдутся из (29) при помощи формул аналогичных (15). Заметим, что (30) мы можем определить b1, b2, в виде рядов по степеням m. Таким образом, мы можем (27) как и в § 1 представить в виде ряда.

(33)

P,Q-определяются формулами (31) (32).

 

§ 4 Исследование устойчивости периодических решений в области резонанса

 

Аналогично тому, как мы это делали в § 2, составим уравнение первого приближения, порожденное решением (33).

Решение опять будем искать в виде . Однако нет необходимости проделывать все выкладки заново. Воспользуемся результатами § 2, приняв:

Из формул (22) (34), тогда D - тот же Якобиан, что и (32). Распишем его:

 

 

(36)

;

Тогда, зная функцию f, мы можем вычислить D в виде функции P, Q и aо.

Заметим, что равенство (23 а) в нашем случае имеет вид:

; (37)

Опираясь на результаты исследования, полученных в § 2, нужно рассмотреть при исследовании устойчивости два случая: (при достаточно малых m)

1) p2 - q < 0

2) p2 - q > 0

В первом случае устойчивость характеризуется условием q<1 или, что то же самое b<0.

Во втором случае (*) последнее может быть выполнено только, если b < 0, а D > 0. Нетрудно видеть, что необходимым достаточным условием в обоих случаях является b < 0, D > 0. (Это можно получить из неравенства (*)).

§ 5 Применение общих формул, полученных в предыдущих параграфах, к теории захватывания в регенеративном приемнике для случая, когда характеристика - кубическая парабола.

Мы рассмотрим простой регенеративный приемник с колебательным контуром в цепи сетки, на который действует внешняя сила Ро sin w1 t.

Дифференциальное уравнение колебаний данного контура следующее:

(39)

Считая, что анодный ток зависит только от сеточного напряжения, а также, что характеристикой является кубическая парабола:

(40)

S-крутизна характеристики, К - напряжение насыщения .

Далее, вводя обозначения:

Получим дифференциальное уравнение для х:

(41)

А: (случай далекий от резонанса).

Для него применяем результаты § 1, полагая .

Исходное решение в не посредственной близости, к которому устанавливается искомое решение следующее:

Если w > 1, т.е. wо > w1, то разность фаз равна 0, если w < 1, то разность фаз равна p. В этом отношении все происходит в первом приближении также, как и при обычном линейном резонансе. Устойчивость определяется знаком b (b < 0).

(42).

Т.е. те решения, для которых выполняется это условие, устойчивы.

В: (область резонанса, § 3, 4).

В качестве исходного периодического решения, в непосредственной близости к которому устанавливается искомое, будет решение следующего вида: x = P sin t + Q cos t (P, Q - const).

Запишем уравнение, определяющее эти P и Q, т.е. соотношение (31) для нашего случая.

 

Или преобразовав их, получим следующее:

Полагая Р = R sin j; Q = R cos j. Далее найдем для амплитуды R и фазы j для того исходного периодического решения, в близости к которому устанавливается рассматриваемое периодическое решение, соотношения связывающие их:

Первая формула дает "резонансную поверхность" для амплитуды. Вторая - для фазы. По (38) условия устойчивости имеют вид b < 0, D > 0. Считаем b и D через формулы (35-37).

(46)

Т.е. решение является устойчивым, если удовлетворяется условие (**). В заключение выпишем формулы для вычисления aо, соответствующего ширине захватывания для рассматриваемого случая.

1)

a0 - является общим корнем уравнений

 

2)

Сама ширина Dw, отсчитанная от одной границы захватывания до другой выражается следующим образом: Dw = aо w2о (MS - c r). Можно дать простые формулы для вычисления ширины захватывания в следующих случаях:

а) l2о << 1; Dw = wо Ро/Vоg.

б) для очень сильных сигналов (Vоg - амплитуда сеточного напряжения при отсутствии внешней силы).

 

Список литературы

1. Андронов А.А. Собрание трудов, издательство "Академии наук СССР", 1956.

2. Андронов А.А., Витт А. К теории захватывания Ван дер Поля.. Собрание трудов, издательство "Академии наук СССР", 1956.

3. Ляпунов А. Общая задача об устойчивости движения, Харьков, 1892.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: