Топливные насосы без электронного управления




Основными механизмами и узлами топливной аппаратуры дизелей с рядным расположением плунжерных пар являются: топливный насос высокого давле­ния (ТНВД) 4 (рис.5.1), топливоподкачивающий насос 5 низкого давления, муфта 3 опере­жения впрыска топлива, фор­сунки 9, расположенные в головках цилиндров, топливный бак 1, фильтр 2тонкой очистки топлива с перепускным клапаном, топливопроводы низкого и высокого дав­ления, топливопроводы слива топлива и свечи накала 11.

 

Рис. 5.1. Схема системы питания дизельных двигателей с рядным расположением плунжерных пар:

1 – топливный бак; 2 – топливный фильтр; 3 – муфта опережения впрыска; 4 – ТНВД; 5 – топливоподкачивающий насос; 6 – рычаг привода рейки; 7 – педаль подачи топлива; 8 – топливопровод высокого давления; 9 – форсунка; 10 – топливопроводы слива топлива; 11 – свеча накаливания; 12 – реле свечи накала; 13 – АКБ; 14 – выключатель свечей накала и стартера; 15 – двигатель

 

Взаимодействие механизмов и уз­лов топливной аппаратуры, а также циркуляция топлива в них происхо­дят следующим образом. Топливо­подкачивающий насос 5 низкого давления через топливопровод низкого давления забирает топливо из бака 1 и нагне­тает его по топливопроводу низкого давления в фильтр 2. Из фильтра по топливопроводу топливо поступает к насосу высокого давления, откуда оно под большим давлением по топливопроводам высокого давления подается в соот­ветствии с порядком работы дизе­ля к его форсункам 9, через которые впрыскивается в цилиндры с точностью 0,5° по углу поворота коленчатого вала. Для обеспечения надежного запуска двигателя поступающий в цилиндры воздух подогревается свечами накаливания 11, которые кратковременно включаются при повороте выключателя 14.

Топливные фильтры. Топливные фильтры предназначены для очистки топлива от твердых частиц. Они также предохраняют топливо от компо­нентов, вызывающих износ агрегатов си­стемы впрыска, поэтому должны быть достаточно емкими, чтобы собирать большое количество отсеиваемых частиц и обеспечивать длительные интервалы между техническими обслуживаниями. Если фильтр забивается, подача топлива снижается, и мощность двигателя падает.

Прецизионные детали системы впры­ска очень чувствительны к мельчайшему загрязнению топлива. К их защите от из­носа предъявляются высокие требова­ния, чтобы обеспечить надежность рабо­ты, минимальный расход топлива и пред­писанный уровень эмиссии ОГ.

При особо высоких требованиях к за­щите от износа и/или при увеличенном интервале обслуживания системы пода­чи топлива снабжаются фильтрами гру­бой и тонкой очистки.

Фильтр грубой очистки топлива предназначается, главным образом, для фильтрации крупных частиц и ча­ще всего представляет собой сетку с ша­гом в 300 мкм.

Фильтр тонкой очистки топлива расположен на топливной магистрали пе­ред топливоподкачивающим насосом или ТНВД. Фильтрация происходит за счет протекания топлива через сменные фильтрующие элементы 3 (рис. 5.2), вы­полненные из прессованных материалов или многослойных синтетических мик­роволокон. Возможны также конструк­ции, состоящие из двух фильтров, соеди­ненных либо параллельно для увеличе­ния емкости, либо последовательно, что позволяет проводить ступенчатую очист­ку топлива или соединять в единый агре­гат фильтры грубой и тонкой очистки. Все больше используются конструкции фильтров, в которых меняется только фильтрующий элемент.

 

Рис. 5.2. Фильтр тонкой очистки топлива:

1 – подвод топлива; 2 – отвод очищенного топлива; 3 – фильтрующий элемент; 4 – сливная пробка; 5 – крышка; 6 – корпус; 7 – распорная трубка; 8 – водосборник

 

Топливо может содержать влагу в виде ка­пель воды или в виде эмульсии воды с то­пливом (например, конденсат, возникаю­щий при перепадах температуры в топ­ливном баке). Естественно, вода не долж­на попадать в систему впрыска топлива.

Из-за различного поверхностного на­тяжения воды и топлива на фильтрующих элементах образуются капельки воды. Они накапливаются в водосборни­ке 8. Для удаления свободной влаги может применяться отдельный влагоотделитель-сепаратор, в котором капли воды отделяются от топлива под действи­ем центробежной силы. Контролируют наличие воды специальные датчики.

Для предотвращения закупоривание пор фильтрующих элементов кристаллами парафина, образующимися в топливе при зимней эксплуатации, в топливных фильтрах применяется предварительный подогрев топлива. В большинст­ве случаев предварительный подогрев то­плива осуществляется с помощью элект­ронагревательных элементов, охлаждаю­щей жидкости или топлива, поступаю­щего из системы обратного слива.

Свечи накаливания. В дизельных двигателях топливо воспламеняется от высокой температуры сжатого воздуха. При запуске двигателя, особенно при низкой температуре окружающего воздуха, температура в камере сгорания недостаточна для надежного самовоспламенения топлива. Для обеспечения надежного запуска дизельного двигателя в его конструкции предусмотрена система предварительного разогрева с использованием свечей накаливания. Свечи накаливания разогревают воздух в зоне впрыска топлива до температуры 850…1000°С за 3…4 с, что позволяет значительно улучшить условия запуска и после запуска в течении нескольких минут подогревать поступающий воздух при прогреве охлаждающей жидкости до 75°С.

Свечи подразделяются на штифтовые с нагреваемой спиралью и керамические.

В штифтовой свече штифт накаливания герметично запрес­совывается в корпус 5 (рис. 5.3), обеспечивая хорошее газо­вое уплотнение. Штифт состоит из термокоррозионностойкого стержня 4 накали­вания, внутри которого в уплотненном на­полнителе 9 из порошка оксида магния находится спиральная нить накаливания. Эта нить состоит из двух последовательно соединенных резисторов: размещенной на конце трубки накаливания нагрева­тельной спирали и регулирующей спи­рали. Нагревательная спираль имеет практически независимое от тем­пературы сопротивление, а регулирующая обладает положительным темпе­ратурным коэффициентом. При работе свечи накаливания она нагревается до температуры 850°С и работает в течение 4…30 с. в зависимости от типа свечи и температуры двигателя. Подавае­мое топливо при этом нагревается до оптимальной температуры горения.

Продолжительность периода подогре­ва регулируется блоком управления свечи накаливания, который контролирует температуру двигателя через темпера­турный датчик охлаждающей жидкости и изменяет время подогрева.

Установленная на панели контрольная лампочка сообщает водителю, что про­исходит подогрев. Лампочка гаснет, после окончания подогрева, что свидетельствует о возможности запуска двигателя. После запуска двигателя свеча накаливания в зависимости от температуры двигателя может работать еще некоторое время. Это помогает улуч­шить сгорание топлива, пока двигатель прогревается и уменьшает выбросы от­работавших газов. Обычно, подогрев включается клю­чом зажигания, поворотом во второе по­ложение. Однако некоторые модели автомобилей обо­рудованы системой предпускового подогрева, которая включается только тогда, когда открыта водительская дверь.

Рис. 5.3. Свеча накала:

1 – штекер подачи электрического напряжения; 2 – изолирующая шайба; 3 – двойное уплотнение; 4 – стержень; 5 – корпус; 6 – уплотнение защитной оболочки; 7 – нагревательная спираль; 8 – трубка накаливания; 9 – наполнитель

 

 

Основными элементами керамической свечи накаливания являются контакт, корпус свечи и нагревательный стержень, выполненный из керамики (рис. 5.4). Нагревательный стержень состоит из изолирующего защитного керамического слоя

и внутреннего керамического нагревательного элемента, заменяющего собой нагревательную и регулировочную спираль обычных металлических свечей накаливания.

Рис. 5.4.Керамическая свеча накаливания:

1 – контакт; 2 – корпус свечи; 3 – керамический нагревательный элемент; 4 – защитный керамический слой

 

Керамическая свеча накаливания работает при номинальном напряжении 7 В. Основными преимуществами керамических свечей накаливания, относительно металлических свечей, являются лучшая работа в условиях холодного пуска за счёт высокой температуры предварительного и последующего накаливания, меньшая токсичность ОГ благодаря более высокой температуре накаливания и больший срок службы.

Топливный насос высокого давления. Примером рядного топливного насоса высокого давления применяемого на легковых автомобилях является насос дизеля Мерседес 190, состоящий из нескольких одинаковых секций (рис. 5.5). В передней части этого насоса расположен вакуумный насос 14, приводимый в движение эксцентриком 2, расположенным на торце кулачкового вала.

Рис. 5.5. Топливный насос высокого давления Мерседес:

1 – штуцер подключения вакуумного усилителя тормозов; 2 – эксцентрик привода вакуумного насоса; 3 – звездочка приводной цепи; 4 – автоматическая муфта опережения впрыска; 5 – винт установки начала впрыска; 6 – подача топлива; 7 – трубопровод высокого давления; 8 – рычаг перекрытия подачи топлива; 9 – вакуумная камера остановки двигателя; 10 – вакуумная камера увеличения частоты вращения коленчатого вала; 11 – регулятор частоты вращения; 12 – пробка для установки приспособления регулировки начала впрыска; 13 – топливоподкачивающий насос; 14 – вакуумный насос

 

В ниж­ней части корпуса насоса установ­лен кулачковый вал, который соединяется со звездочкой привода через муфту опережения впрыска.

На кулачковом валу имеются про­филированные кулачки для каж­дой насосной секции и эксцентрик для приведения в движение насоса низкого давления, который крепится к привалочной плоскости насоса высокого давления.

В перегородке корпуса против каждого кулачка установлены роли­ковые толкатели 14(рис. 5.6). Оси роликовсвоими концами входят в пазы корпуса насоса, предотвращая проворачивание толкателей.

 

Рис. 5.6. Секция рядного ТНВД:

1 – зубчатый сектор; 2 – регулирующая поворотная втулка плунжера; 3 – боковая крышка; 4 – штуцер нагнетательного клапана; 5 – корпус нагнетательного клапана; 6 – нагнетательный клапан; 7 – гильза плунжера; 8 – плунжер; 9 – рейка ТНВД; 10 – поводок плунжера; 11 – возвратная пружина плунжера; 12 – нижняя тарелка возвратной пружины; 13 – регулировочный болт; 14 – роликовый толкатель; 15 – кулачковый вал

 

Насосные секции установлены в верхней части корпуса и крепятся винтами. Основной частью каж­дой насосной секции является плун­жерная пара, состоящая из плун­жера 8 и гильзы 7. Плунжерную пару изготовляют из хромомолибденовой стали и подвергают закалке до высокой твердости. После окон­чательной обработки подбором про­изводят сборку плунжеров и гильз так, чтобы обеспечить в соединении зазор, равный 3…5 мкм. Этим достигается максимальная плотность сопряжения взаимодейст­вующих деталей обеспечивающих давление впрыскивания топлива до 1200 кгс/см2.

Сверху каждой плунжерной пары установлен нагнетательный клапан 6, размещенный в корпусе 5.

При вращении кулачкового вала 15 насоса выступ кулачка набе­гает на роликовый толкатель 14, который через регулировочный болт воздействует на плунжер 8 и перемещает его вверх. Когда выступ кулачка выходит из-под ролика толкателя, пружина 11, упирающаяся в тарелки, возвращает плунжер в первоначаль­ное положение. Рейка 9 входит в зацепление с зубчатым венцомповоротной втулки 2, надетой на гильзу.

Регулирование состава топливовоздушной смеси в дизельном двигателе происходит изменением подачи топлива при неизменном количестве воздуха, в отличие от бензиновых двигателей, где изменяется и то и другое. В рядных ТНВД изменение подачи топлива, обычно осуществляется за счет рейки, однако изменение подачи может осуществляться и за счет золотника, который перемещается по плунжеру. В рассматриваемом ТНВД при перемещении рейки 9 вдоль ее оси втулка 2поворачивается на гильзе и, действуя на выступы плунжера, поворачивает его, в результате чего изменяется количест­во топлива, подаваемого к форсун­кам. Ход рейки ограничивается сто­порным винтом, входящим в ее продольный паз. Задний конец рейки соединен с тягой регулятора частоты вращения коленчатого вала, установленного в корпусе ТНВД.

Принцип работы секции насоса заключается в следующем. При движении плунжера 1 (рис. 5.7, а) вниз внутреннее пространство гильзы 12 наполняется топливом, и одновременно оно подается насосом низкого давления в подводящий канал 10 корпуса11 насоса.

Рис. 5.7. Схема работы секции насоса высокого давления:

а – впуск топлива; б – начало подачи; в – конец подачи;

1 – плунжер; 2 – продольный паз; 3 – выпускное отверстие; 4 – сливной канал; 5 – пружина; 6 – нагнетательный клапан; 7 – разгрузочный поясок; 8 – надплунжерное пространство; 9 – впускное отверстие; 10 – подводящий канал; 11 – корпус насоса; 12 – гильза; 13 – винтовая кромка

 

При этом открывается впускное отверстие 9, и топливо поступает в надплунжерное пространство 8. Затем под действием кулачка плунжер начи­нает подниматься вверх (рис. 5.7, б), перепуская топливо обратно в под­водящий канал 10 до тех пор, пока верхняя кромка плунжера 1 не пере­кроет впускное отверстие 9 гильзы. После перекрытия этого отверстия давление топлива резко возрастает и при рабочем давлении топливо, пре­одолевая усилие пружины 5, подни­мает нагнетательный клапан 6 и по­ступает в топливопровод.

Дальнейшее перемещение плунже­ра вверх вызывает повышение давле­ния, превышающее давление, создаваемое пружиной форсунки, в результате чего игла форсунки приподнимается и проис­ходит впрыскивание топлива в каме­ру сгорания. Подача топлива про­должается до тех пор, пока винто­вая кромка 13 (рис. 5.7, в) плунже­ра не откроет выпускное отверстие 3 в гильзе, в результате чего давление над плунжером резко па­дает, нагнетательный клапан 6 под действием пружины закрывается и надплунжерное пространство разъе­диняется с топливопроводом высо­кого давления. При дальнейшем дви­жении плунжера вверх топливо пере­текает в сливной канал 4 через продольный паз 2 и винтовую кромку 13 плунжера.

Нагнетательный клапан 6 разгру­жает топливопровод высокого дав­ления, так как он снабжен цилиндрическим разгрузочным пояском 7, который при посадке клапана на седло обеспечивает увеличение объема топливопровода. Этим достигается резкое прекращение впрыскивания топлива и устраняется возможность его подтекания через распылитель фор­сунки, что улучшает процесс смесе­образования и сгорания рабочей смеси, а также повышает надеж­ность работы форсунки.

В ТНВД с рядным расположением плунжерных пар применяются нагнетательные клапана объемного течения и ограничения обратного течения (рис. 5.8, а), а также клапана постоянного давления (рис. 5.8, b).

Клапана обратного течения применяются для демпфирования волн обратного давления топлива, возникающих при закрытии распылителя форсунки, что уменьшает износ распылителя и подвпрыски топлива в цилиндры двигателя. Клапан устанавливается как дополнительный над обычным клапаном перед топливопроводом высокого давления, идущим к форсунке.

Рис. 5.8. Штуцер ТНВД с нагнетательным клапаном:

а – с клапаном объемного течения и ограничением обратного течения; b – с клапаном постоянного течения; 1 – корпус нагнетательного клапана; 2 – обратный клапан; 3 – промежуточный объем; 4 – разгрузочный поясок; 5 – сферический клапан; 6 – втулка клапана; 7 – нагнетательный клапан; 8 – жиклер; 9 – обратный клапан

 

Клапан состоит из головки с запорной конической фаской, разгрузочного пояска 4 и хвос­товика с прорезями для прохода топлива. Сверху на клапан установ­лена пружина 3, которая прижи­мает его к седлу. При подаче топлива разгрузочный поясок вместе с конусом клапана приподнимается над направляющей втулкой и топливо под давлением поступает к форсунке. При закрытии основного клапана клапан обратного течения перекрывает доступ обратных волн топлива.

Клапана постоянного течения применяются на ТНВД с давлением впрыска более 800 кг/см2, для уменьшения кавитации. При подаче топлива через нагнетательный клапан в конце хода нагнетания шариковый обратный клапан под действием обратных волн давления топлива открывается и система топливоподачи действует как нагнетательный клапан с перепускным дросселем. При уменьшении давления клапан закрывается, при этом в магистрали сохраняется постоянное давление.

Перемещение плунжера во втулке с момента закрытия впускного от­верстия до момента открытия вы­пускного отверстия называется активным ходом плунжера, который в основном и определяет количество подаваемого топлива за цикл работы топливной секции.

Изменение количества топлива, подаваемого секцией за один цикл, происходит в результате поворота плунжера зубчатой рейкой 5 (рис. 5.9). При различных углах поворота плунжера благодаря винтовой кромке смеща­ются моменты открытия выпускного отверстия. При этом, чем позднее открывается выпускное отверстие, тем большее количество топлива мо­жет быть подано к форсункам.

Рис. 5.9. Схема изменения подачи топлива:

1 – гильза; 2 – впускное отверстие; 3 – плунжер; 4 – винтовая кромка; 5 – рейка

 

На рис. 5.9 показаны следующие положения винтовой кромки плунже­ра за цикл работы топливной секции:

положение а – нулевая подача топлива. Плунжер 3 повернут так, что его продольный паз расположен против выпускного отверстия, в результате чего при пере­мещении плунжера вверх топливо вытесняется в сливной канал, пода­ча топлива прекращается и двига­тель останавливается.

положение б – промежуточная подача, так как при повороте плунжера 3 по часовой стрелке объем вытесненного топлива уменьшается так как выпускное отверстие открывается раньше;

положение в – максимальная по­дача топлива и наибольший актив­ный ход плунжера 3. В этом случае расстояние от винтовой кромки 4 плунжера до выпускного отверстия будет наибольшим.

Муфта опережения впрыска топлива. В дизельных двигателях топливо впрыскивается в нагретый сжатием воздух, имеющий температуру 450…550 °С и давление 30…40 кгс/см2. Подача топлива начинается до ВМТ и может заканчиваться как до, так и после ВМТ (рис. 5.10).

Рис. 5.10. Диаграмма изменения давления в дизельном двигателе в зависимости от угла поворота коленчатого вала:

Р – давление в цилиндре двигателя; А – начало впрыска топлива; В – начало сгорания топлива; с – период задержки воспламенения; 1 ­­­– такт впуска; 2 – такт сжатия; 3 – такт сгорания и расширения; 4 – такт выпуска

 

Началом подачи топлива считается начало впрыска топлива ТНВД. Подача топлива начинается в точке А. Угол поворота коленчатого вала между началом впрыска и В.М.Т. называют углом опережения впрыска.

В течение некоторого времени после начала впрыска горение еще не поступает. Давление в этот пе­риод изменяется из-за продолжающегося сжатия, причем вначале несколько снижается темпера­тура, а соответственно и давление сжимаемого воздуха вследствие затраты теплоты на нагревание и испарение поданного топлива. В течение указанного периода развиваются предпламенные реакции, возникают первые очаги самовоспламенения, и давление начинает повышаться в результате выделения теплоты сгорания.

Точку В, в которой линия повышения давления вследствие сго­рания отрывается от линии сжатия при его отсутствии, условно при­нимают за начало сгорания, а интервал времени, (в градусах пово­рота коленчатого вала) между точками Аи В– за период задержки воспламенения или период индукции. В результате сгорания значи­тельной части испарившегося топлива, образовавшего с воздухом за этот период горючую смесь, а также вследствие сгорания продол­жающего поступать через форсунку топлива давление и темпера­тура на участке А–Вбыстро повышаются.

Подача топлива в цилиндры двигателя зависит от его режима работы и может изменяться.

Для опережения впрыскивания топлива в цилиндры дизеля в зави­симости от частоты вращения его коленчатого вала в передней части насоса установлена центробежная муфта.

В момент впрыска топлива через нагнетательный клапан ТНВД игла форсунки приподнимается за счет волны давления, которая передается со скоростью звука по трубопроводам высокого давления. Необходимое время для передачи давления всегда одинаково и не зависит от частоты вращения коленчатого вала двигателя, это же характерно и для воспламенения топлива. Независимо от частоты вращения максимальное давление при сгорании достигается всегда в одинаковое время. При работе двигателя на высокой частоте вращения коленчатого вала без коррекции угла опережения впрыска происходило бы запаздывание впрыска. Поэтому с увеличением частоты вращения коленчатого вала необходимо несколько раньше производить впрыск топлива, чтобы достичь оптимального процесса сгорания.

Опережение момента впрыска топлива (начала подачи топлива) осуществляется автоматической муфтой опережения впрыска в зависимости от частоты вращения коленчатого вала. Она состоит из двух полумуфт – ведущей 1 и ведомой 2 (рис. 5.11). Обе полумуфты подвижно соединены между собой через эксцентриковый элемент 5, состоящий из компенсирующих и регулировочных эксцентриков, которые направляются штифтом, жестко связанным с корпусом. Внутренняя полумуфта жестко связана с кулачковым валом насоса высокого давления. К наружной полумуфте прикреплен привод ТНВД (звездочка, шестерня). Внутри муфты опережения впрыска расположены центробежные грузы 8, которые соединены с эксцентриковым элементами 5 и удерживаются в исходном положении пружинами с переменной жесткостью 7.

Рис. 5.11. Муфта опережения впрыска:

1 – ведущая полумуфта (приводная шестерня); 2 – ведомая полумуфта (ступица); 3 – корпус муфты; 4 – эксцентрик регулировочный; 5 – эксцентрик дополнительный; 6 – палец; 7 – пружина; 8 – груз; 9 – опорная шайба

 

Принцип работы муфты показан на рис. 5.12. На небольшой частоте вращения коленчатого вала двигателя центробежные грузы сжаты за счет сил стягивающих пружин, при этом ведущая и ведомая полумуфты не имеют угла расхождения (рис. 5.12, а). По мере увеличения частоты вращения коленчатого вала возрастают центробежные силы, действующие на грузы. Под действием этих сил преодолевается противодействие пружин и грузы расходятся (рис. 5.12, в, с). Грузы, воздействуя на эксцентриковый элемент, поворачивают ведомую полумуфту, связанную с кулачковым валом на определенный угол, что приводит к угловому смещению кулачкового вала насоса (по направлению вращения) относительно привода насоса. Следовательно, угол опережения впрыска топлива увеличивается (рис. 5.12, d).

 

Рис. 5.12. Принцип действия муфты опережения впрыска топлива

При снижении частоты вращения коленчатого вала центробежная сила грузов уменьшается и под действием пружин ведомая полумуфта поворачивается относительно ведущей в сторону, противоположную вращению кулачкового вала насоса, в результате чего угол опережения впрыска уменьшается.

Регуляторы частоты вращения. В отличие от бензинового двигателя дизельные двигатели не имеет во впускном трубопроводе дроссельной заслонки, позволяющей четко регулировать частоту вращения коленчатого вала за счет изменения подачи воздуха с одновременным изменением подачи топлива. У дизельного двигателя не существует положения управляющей рейки, которое бы позволило двигателю поддерживать определенную частоту вращения коленчатого вала двигателя без помощи регулятора. Например, при запуске холодного двигателя и его работе на холостом ходу, потери на трение кривошипно-шатунного, газораспределительного и других механизмов и приводимых от двигателя агрегатов начинают снижаться, а количество подаваемого топлива будет постоянным. При отсутствии регулятора частота вращения будет увеличиваться и может достичь критической точки, при которой может произойти разрушение двигателя. Регуляторы частоты вращения коленча­того вала двигателя устанавливаются на насосе высокого давления и приво­дятся в действие от кулачкового вала. Его работа основана, как и в автоматической муфте опережения впрыска, на использовании центробежных сил. Напри­мер, при заданном положении педали управления подачи топлива и возникновении дополнительного сопротивления движению (на подъе­ме) частота вращения коленчатого вала двигателя будет уменьшаться, а скорость автомобиля падать. Чтобы ее поддержать на заданном уров­не, необходимо повысить крутящий момент двигателя. Это может быть достигнуто увеличением количества топлива, впрыскиваемого в ци­линдры двигателя. Регулятор воспринимает снижение частоты вращения коленчатого вала и автоматически увеличивает по­дачу топлива насосом высокого давления, благодаря чему скорость ав­томобиля восстанавливается до заданного значения.

Аналогичным образом регулятор изменяет подачу топлива при уменьшении нагрузки на двигатель, только в этом случае управляющее воздействие регулятора сводится к уменьшению коли­чества впрыскиваемого топлива. В результате при снижении нагрузки на двигатель происходит уменьшение скорости движения и доведение ее до заданного уровня. Таким образом, регулятор авто­матически изменяет подачу топлива при изменении нагрузки на дви­гатель и обеспечивает установку любого выбранного скоростного ре­жима при отклонениях от него в пределах – 10…20%.

Различают двухрежимный и всережимные регулятора частоты вращения коленчатого вала. Двухрежимный регулятор (типа RQ) поддерживающий определенную частоту вращения коленчатого вала на режимах минимальной и максимальной частоты вращения коленчатого вала. Всережимный регулятор (типа RSV) поддерживает необходимую частоту вращения на всех режимах работы двигателя.

Всережимные регуляторы устанавливаемые на небольших высокооборотистых двигателях позволяют поддерживать частоту вращения коленчатого вала в пределах 6…10%.

В топливных насосах применяют регуляторы с различными принципами работы: ме­ханические, пневматические, гидравлические и комбинированные. Для автомобильных двигателей наиболее широко при­меняют механические центробежные регуляторы и реже пневматические регуляторы.

Центробежный регулятор представляет собой систему, состоя­щую из вращающихся грузов, пружин и рычагов, связанных с рей­кой топливного насоса высокого давления, управляющей цикловой подачей топлива.

В двухрежимных регуляторах механизм регулятора связан с рейкой насоса высокого давления при помощи дифференциального рычага, соединенного также и с тягой педали акселератора, кото­рой управляет водитель. Основными элементами двухрежимного центробежного регулятора (рис. 5.13) являются большие 4 и малые 3 грузы.

Рис. 5.13. Схема работы двухрежимного центробежного регулятора

Грузы свободно посажены на пальцы крестовины 1 и упи­раются лапками в скользящую муфту 5, также свободно установ­ленную на вращающемся валу 6 регулятора, связанном зубчатой передачей с валом топливного насоса. С противоположной стороны в скользящую муфту под действием слабой пружины 12, помещен­ной в стакане 13 и втулке 11, упирается основной (вильчатый) рычаг 7 регулятора. Этот рычаг соединен при помощи двуплечего рычага 8 с рейкой 9 топливного насоса высокого давления и тягой 14 педа­ли акселератора. Сильная пружина 10, установленная на втулке 11, упирается в неподвижную стенку корпуса регулятора. Грузы со слабой пружиной и сильной пружинами об­разуют две последовательно действующие системы регулирования, в которых используется общий рычажный механизм.

Массы грузов и затяжку слабой пружины подбирают так, чтобы действующие на муфту составляющие центробежной силы грузов и силы пружины оказались равными, т. е. чтобы система была в равновесии при минимальной частоте вращения коленчатого вала. Педаль акселератора во время работы двигателя на холостом ходу с минимальной частотой вращения коленчато­го вала полностью отпущена и двуплечий рычаг находится в поло­жении I. При самопроизвольном уменьшении частоты вращения коленчатого вала двигателя центробежная сила грузов уменьшается и пружина 12, от­клоняя вильчатый рычаг, перемещает рейку топливного насоса в сторону увеличения подачи топлива. В случае самопроизвольного повышения частоты вращения коленчатого вала двигателя центробежная сила гру­зов увеличивается и муфта 5, отклоняя вильчатый рычаг и сжимая при этом пружину 12, перемещает рейку насоса в сторону уменьшения подачи топлива. Таким образом, одна система двухрежимно­го регулятора обеспечивает устойчивую работу дизеля при мини­мальной частоте вращения коленчатого вала на холостом ходу.

Массу грузов и затяжку сильной пружины подбирают так, чтобы равновесие системы обеспечивалось при максимальной частоте вращения коленчатого вала, допустимом для данного двигателя. Педаль акселератора при работе двигателя с максимальной частотой вращения коленчатого вала полностью нажата, и двуплечий рычаг находится в положении II. При этом большие грузы регулятора раздвигаются до упоров 2 и не изменяют своего положения, сжимая слабую пружину вильчатым рычагом настолько, что стакан 13 вдви­гается до упора в торец втулки 11.

С дальнейшим увеличением частоты вращения коленчатого вала, которое может происходить при уменьшении нагрузки дизеля, цент­робежная сила грузов увеличивается и муфта 5, отклоняя вильчатый рычаг и сжимая при этом пружину 10, перемещает рейку насоса высокого давления в сторону уменьшения подачи топлива. Таким образом, вторая система двухрежимного регулятора огра­ничивает максимальную частоту вращения, не допуская его разноса, даже при его полной разгрузке.

На рис. 5.14 приведены скоростные характеристики дизеля с двухрежимным регулятором.

Рис. 5.14. Характеристики дизеля с двухрежимным регулятором:

Мкр – крутящий момент; Nе – мощность; n – частота вращения коленчатого вала

 

Кривые 1, 2 и 3 соответствуют различ­ным положениям педали акселератора. Участок n1…n2 регулирует­ся системой минимальной, а участок n3…n4 системой максималь­ной частоты вращения регулятора. В диапазоне между этими участками режим работы двигателя управляется только педалью ак­селератора без воздействия регулятора.

Центробежный регулятор всережимного типа также представ­ляет собой систему, состоящую из вращающихся грузов, пружины и основного рычага, связанного с рейкой топливного насоса высо­кого давления, управляющей цикловой подачей топлива. Особен­ность регулятора этого типа заключается в отсутствии непосредст­венной связи рейки топливного насоса с педалью акселератора. На рис. (рис. 5.15) дана схема всережимного центробежного регулятора.

Рис. 5.15. Схема работы всережимного центробежного регулятора

На вра­щающемся валу 9 регулятора, который при помощи шестерен свя­зан с кулачковым валом топливного насоса, закреплена крестовина 6. В проушинах крестовины на пальцах 7 установлены качающиеся грузы 8 с лапками, которые упираются в подвижную муфту 10, на­детую на вал регулятора. С другой стороны в муфту упирается ос­новной вильчатый рычаг 2, установленный на оси 11 и соединенный с пружиной 3 и рейкой 1 топливного насоса высокого давления. Другой конец пружины соединен с рычагом 4, жестко связанным общей осью с рычагом 5 управления регулятором, который разме­щен с наружной стороны корпуса регулятора.

Система находится в равновесии, когда составляющие центро­бежной силы вращающихся грузов и силы пружины, действующие на подвижную муфту, равны между собой. При повышении частоты вращения коленчатого вала двигателя и связанного с ним вала регу­лятора, происходящем при уменьшении нагрузки, центробежная сила грузов увеличивается, заставляя их раздвинуться и переместить подвижную муфту, вильчатый рычаг и связанную c ним рейку топливного насоса в сторону уменьшения подачи топли­ва. В случае понижения частоты вращения, происходящем при уве­личении нагрузки дизеля, центробежная сила грузов уменьшается и пружина, воздействуя на вильчатый рычаг, перемещает рейку топливного насоса в сторону увеличения подачи топлива. Частоту вращения изменяют натяжением пружины, связанной с рычагом уп­равления регулятором, причем для повышения частоты вращения ко­ленчатого вала необходимо увеличить натяжение пружины.

На рис. (рис. 5.16) приведены скоростные характеристики дизеля с всережимным регулятором частоты вращения.

Рис. 5.16. Характеристики дизеля с всережимным регулятором:

Мкр – крутящий момент; Nе – мощность; n – частота вращения коленчатого вала

 

Каждому положению ры­чага управления регулятором соответствует определенная ветвь кривой – А1В1, А2В2 и т. д., характеризующая зависимость частоты вращения коленчатого вала от мощности и крутящего момента (на­грузки) двигателя в диапазоне от полной мощности, развиваемой при максимальной частоте вращения коленчатого вала, до холостого хода при минимальной частоте вращения коленчатого вала. Из рассмотре­ния характеристик видно, что при постоянном положении рычага управления регулятором частота вращения мало зависит от изменения мощности в широких пределах. Однако степень неравномерности увеличивается при уменьшении регулируемой частоте вращения и становится значительной (40…70%) при минимальной частоте вращения на холостом ходу. Это обусловливается постоянной жесткостью пружины и значительным уменьшением центробежной силы грузов при уменьшении частоты вращения вала регулятора.

Регуляторы принцип работы которых описан выше применяются на большинстве рядных ТНВД. На рис. 5.17 показан двухрежимный регулятор рядного ТНВД легкового автомобиля Мерседес.

Рис. 5.17. Двухрежимный регулятор:

1 – вакуумная камера остановки двигателя; 2 – контргайка; 3 – вакуумная камера увеличения частоты вращения коленчатого вала двигателя; 4 – ограничительный винт количества топлива на минимальной частоте вращения коленчатого вала двигателя; 5 – рычаг изменения подачи топлива; 6 – винт пружины регулятора; 7 – промежуточный рычаг; 8 – винт регулировки максимальной частоты вращения; 9 – центробежный регулятор; 10 – рейка; 11 – упорный рычаг; 12 – рычаг рейки

 

На режиме пуска вследствие максимального сближения грузов центробежного регулятора 9 рейка регулирования подачи топлива 10 через систему рычагов занимает положение полной подачи топлива.

При работе двигателя в режиме холостого хода, вследствие воздействия на рейку слабой пружины со стороны вертикального рычага и положения центробежных грузов, поддерживается стабильная частота вращения коленчатого вала.

В режиме частичной или полной нагрузки воздействие на рейку насоса осуществляется только от педали акселератора, которая связана системой тяг с рычагом изменения подачи топлива на регуляторе и регулятор частоты вращения в работе не участ



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: