Модель абсолютно твердого тела




Предмет физики

1.1. Материя, как объект познания

Физика есть наука о наиболее общих свойствах и формах движения материи. Физические формы движения материи (механическая, тепловая, электромагнитная и др.) имеют место в «неживой» природе, но они же являются составляющими частями более сложных форм движения, относящихся к миру «живой» материи.

Материя – объективная реальность, которая дается человеку в его ощущениях, существуя независимо от его сознания и ощущений. Отдельные свойства материи могут копироваться, фотографироваться, измеряться органами чувств человека и специальными приборами, созданными им. Из этого следует, что материя познаваема.

Физика – наука, которая непрерывно развивается, как и всякая другая наука, т.к. чем шире круг познания, тем больше периметр границ с непознанным.

Связь с философией:

Академик С.И.Вавилов отметил в одной из своих статей: «…предельная общность значительной части содержания физики, ее факторов и законов искони сближала физику с философией… Иногда физические утверждения по своему характеру таковы, что их трудно отличить от философских утверждений, и физик обязан быть философом».

Справедливость этого высказывания подтверждают факты истории развития науки. Такие, например, как попытки изобрести вечный двигатель, неиссякаемые источники энергии, попытки найти мельчайшую частицу вещества. И таковой поначалу считали молекулу, затем атом, затем электрон.

И только вооруженный знанием философии естествоиспытатель знает, что не может быть вечного двигателя, что нет самой маленькой неделимой частицы вещества, как нет и самой крупной – вселенная бесконечна. Это трудно представить непосвященному человеку, но это так, и в этом сходятся физика и философия.

В настоящее время известны два вида существования материи: вещество и поле.

К первому виду материи – веществу – относятся, например, атомы, молекулы и все построенные из них тела.

Второй вид материи образует магнитные, электрические, гравитационные и другие поля.

И если вещество способно отражаться в органах ощущения человека, то поле мы не видим и не ощущаем. Это не значит, что поля нет. Человек может обнаружить наличие полей опосредовано. В том, что магнитное поле материально легко убедиться, посмотрев, например, на работу магнитных кранов, электрических машин. Можно взять два магнита и попробовать соединить их одноименными полюсами, и убедиться, что это невозможно. Вы не увидите никакого вещества между полюсами, но невидимые силы препятствуют соединению одноименных полюсов магнитов точно также, как притягивают одноименные полюса. Эти опыты убеждают: поле материально.

Различные виды материи могут превращаться друг в друга. Так, например, электрон и позитрон, представляющие собой вещество, могут превращаться в фотоны, т.е. в электромагнитное поле. Возможен и обратный процесс.

Материя находится в непрерывном движении. Нет движения – нет материи. Движение – неотъемлемое свойство материи, которое несотворимо и неуничтожимо, как и сама материя.

Материя существует и движется в пространстве и во времени, которые являются формами бытия материи.

1.2. Методы физического исследования

Французский материалист-просветитель Дени Дидро в работе «Мысли к объяснению природы» так характеризовал путь научного познания: «Мы располагаем тремя главными средствами исследования: наблюдением природы, размышлением и экспериментом.

Наблюдение собирает факты; размышление их комбинирует; опыт проверяет результат комбинаций. Необходимы прилежание для наблюдения природы, глубина для размышления и точность для опыта».

Физические законы устанавливаются на основе обобщения опытных фактов и выражают объективные закономерности, существующие в природе. Основными методами физического исследования являются

опыт,

гипотеза,

эксперимент,

теория.

Найденные законы обычно формулируются в виде количественных соотношений между различными физическими величинами.

Опыт или эксперимент является основным методом исследования в физике. Для объяснения экспериментальных данных привлекаются гипотезы.

Гипотеза – научное предположение, выдвигаемое для объяснения какого-либо факта или явления. После проверки и подтверждения гипотеза становится научной теорией или законом.

Физические законыустойчивые повторяющиеся объективные закономерности, существующие в природе.

Физическая теория представляет собой систему основных идей, обобщающих опытные данные и отражающих объективные закономерности природы.

Наука возникла в глубокой древности как попытка осмыслить окружающие явления, взаимосвязь природы и человека. Сначала она не разделялась на отдельные направления, как сейчас, а объединялась в одну общую науку – философию. Астрономия выделилась в отдельную дисциплину раньше физики и является наряду с математикой и механикой одной из древнейших наук. Позже наука о природе так же выделилась в самостоятельную дисциплину. Древнегреческий учёный и философ Аристотель назвал физикой одно из своих сочинений.

Одна из главных задач физики – объяснить строение окружающего нас мира и происходящие в нём процессы, понять природу наблюдаемых явлений. Другая важная задача – выявить и познать законы, которым подчиняется окружающий мир. Познавая мир, люди используют законы природы. Вся современная техника основана на применении законов, открытых учёными.

С изобретением в 1780-х гг. парового двигателя началась промышленная революция. Первый паровой двигатель изобрёл английский учёный Томас Ньюкомен в 1712 г. Паровая машина пригодная для использования в прмышленности, впервые создана в 1766 г. русским изобретателем Иваном Ползуновым (1728-1766).Шотландец Джеймс Уатт усовершенствовал конструкцию. Созданный им в 1782 г. двухтактный паровой двигатель приводил в движение машины и механизмы на фабриках.

Сила пара приводила в движение насосы, поезда, пароходы, прядильные станки и множество других машин. Мощным толчком для развития техники послужило создание английским физиком «гениальным самоучкой» Майклом Фарадеем в 1821 г. первого электродвигателя. Создание в 1876г. немецким инженером Николаусом Отто четырёхтактного двигателя внутреннего сгорания открыло эру автомобилестроения, сделало возможным существование и повсеместное использование автомобилей, тепловозов, судов и других технических объектов.

То, что раньше считалось фантастикой, сейчас становится реальной жизнью, которую мы уже не представляем без аудио- и видеотехники, персонального компьютера, сотового телефона и Интернета. Их возникновение обязано открытиям сделанным в различных областях физики.

Однако и развитие техники способствует прогрессу в науке. Создание электронного микроскопа позволило заглянуть внутрь вещества. Создание точных измерительных приборов сделало возможным более точный анализ результатов экспериментов. Огромный прорыв в области изучения космоса был связан именно с появлением новых современных приборов и технических устройств

Таким образом, физика как наука играет огромную роль в развитии цивилизации. Она перевернула самые фундаментальные представления людей – представления о пространстве, времени, устройстве Вселенной, позволив человечеству совершить качественный скачок в своём развитии. Успехи физики позволили сделать ряд фундаментальных открытий в других естественных науках, в частности, в биологии. Развитие физики в наибольшей степени обеспечивало бурный прогресс медицины.

С успехами физики связаны и надежды учёных на обеспечение человечества неиссякаемыми альтернативными источниками энергии, использование которых позволит решить многие серьёзные экологические проблемы. Современная физика призвана обеспечить понимание самых глубинных основ мироздания, появления и развития нашей Вселенной, будущего человеческой цивилизации.

История развития биофизики

Развитие и становление биофизики как пограничной науки проходило ряд стадий. Уже на начальных этапах биофизика была тесно связана с идеями и методами физики, химии, физической химии и математики.

Проникновение и применение законов физики для описания различных закономерности живой природы встретило целый ряд трудностей.

Предметом биофизики является изучение физических и физико-химических процессов, лежащих в основе жизни. По природе объектов ис-следования, биофизика является типичной биологической наукой, а по методам изучения и анализа результатов исследования является своеобразным разделом физики. Биофизические методы созданы на основе физических и физико-химических методов изучения природы. В этих методах должны сочетаться трудно совместимые качества
1. Высокая чувствительность.
2. Большая точность.
Этим требованиям не удовлетворяютполностью никакие методы, однако, наиболее широкое применение получили для биофизических исследований следующие методы:
- оптические;
- радио спектроскопия
- ультразвуковая радиоскопия;
- электронно-парамагнитная резонанснаяспектроскопия (ЭПР);
- ядерная магнитная резонансная спектроскопия.
Необходимо отметить, что любые исследования требуют, чтобы регистрирующие приборы не вносили искажений в изучаемый процесс, однако, трудно сравнить какую-либо физическую систему с живым организмом по необычайно высокой чувствительности организма к любым воздействиям на него. Воздействия не просто нарушают нормальный ход биологических процессов, а вызывают сложные приспособительные реакции, разнообразные вразличных органах и в различных условиях. Искажение смысла измерений может оказаться столь существенным, что становится невозможно вносить поправки в явления, не свойственные изучаемому объекту. При этом, методы коррекции,используемые с успехом в физике и технике, зачастую бесполезны в биофизике.

Ещё в прошлом веке делались попытки использовать методы и теории физики для изучения и понимания природы биологических явлений. Причём исследователи рассматривали живые ткани и клетки как физические системы и не учитывали того факта, что основную роль в этих системах играет химия. Именно поэтому попытки решать задачи оценки свойств биологического объекта с чисто физических позиций носили наивный характер.

Основным методом этого направления являлись поиски аналогий.

Биологические явления, сходные с явлениями чисто физическими трактовались, соответственно, как физические.

Например эффект мышечного сокращения объясняли по аналогии с пьезоэлектрическим эффектом, на основании только того факта, что при наложении потенциала на кристалл происходило изменение длины кристалла, примерно так же как происходило изменение длины мышцы при сокращении. Рост клеток считали аналогичным росту кристалла. Клеточное деление рассматривали как явление, обусловленное только поверхностно-активными свойствами наружных слоёв протоплазмы. Амебоидное движение клеток уподоблялось изменению поверхностного натяжения и, соответственно, его моделировали движением ртутной капли в растворе кислоты.

Даже значительно позже, в двадцатые годы нашего столетия, детально рассматривали и изучали модель нервного проведения на анализе поведения так называемой модели Лили. Эта модель представляла собой железную проволоку, которая погружалась в раствор кислоты и покрывалась при этом плёнкой окиси. При нанесении на поверхность царапины окись разрушалась, а затем восстанавливалась, но одновременно разрушалась в соседнем участке и так далее. Другими словами, получилось распространение волны разрушения и восстановления, очень похожее на распространение волны электроотрицательности возникающей при раздражении нерва.

Возникновение и развитие в физике квантовой теории привело к попытке объяснить действие лучистой энергии на биологические объекты с позиции статистической физики. В это время появляется формальная теория, которая объясняла лучевое поражение как результат случайного попадания кванта (или ядерной частицы) в особо уязвимые клеточные структуры. При этом совершенно упускались из вида те конкретные фотохимические реакции и последующие химические процессы, которое определяют развитие лучевого поражения во времени.

Ещё сравнительно недавно на основании формального сходства закономерностей электропроводности живых тканей и электропроводности проводников полупроводников пытались применить теорию полупроводников для объяснения структурных особенностей целых клеток.

Это направление, базирующееся на моделях и аналогиях, хотя и может привлечь к работе весьма совершенный математический аппарат, вряд ли приблизит биологов к пониманию сущности биологических процессов. Попытки использования чисто физических представлений для понимания биологических явлений и природы живой материи дали большое количество спекулятивных теорий и ясно показали, что прямой путь физики в биологию не продуктивен, так как живые организмы стоят несравненно ближе к химическим системам, чем к физическим.

Значительно более плодотворным оказалось внедрение физики в химию. Применение физических представлений сыграло большую роль в понимании механизмов химических процессов. Возникновение физической химии сыграло революционную роль. На основе тесного контакта физики и химии возникли современная химическая кинетика и химия полимеров. Некоторые разделы физической химии, в которых физика получила доминирующее значение, стали называться химической физикой.

Именно с возникновением физической химии связано развитие биофизики.

Многие важные для биологии представления пришли в неё из физической химии. Достаточно напомнить, что применение физико-химической теории растворов электролитов к биологическим процессам, привело к представлению о важной роли ионов в основных процессах жизнедеятельности.

С развитием физической и коллоидной химии расширяется фронт работ в области биофизики расширяется. Появляются попытки объяснить с этих позиций механизмы реагирования организма на внешние воздействия. Так большую роль в развитии биофизики сыграла школа Лёба (J. Loeb 1906 г). В работе Лёба были выявлены физико-химические основы явлений партеногенеза и оплодотворения. Конкретную физико-химическую интерпретацию получило явление антагонизма ионов.

Позднее появились классические исследования Шаде (H. Schde) о роли ионных и коллоидных процессов в патологии воспаления. Эти исследования завершаются фундаментальным трудом «Физическая химия во внутренней медицине», которые издаётся в России в 1911–1912 гг.

Первая мировая война приостановила развитие биофизики как науки.

Но уже в 1922 году в СССР открывается «Институт биофизики», которым руководит П.П. Лазарев. Здесь он разрабатывает ионную теорию возбуждения, которая в это же время разрабатывается и Нернстом Было установлено, что в явлениях возбуждения и проведения решающая роль принадлежит именно ионам.

С.И. Вавилов занимается вопросами предельной чувствительности глаза. В.Ю. Чаговец разрабатывает ионную теорию возникновения биопотенциалов, Н.К. Кольцов обосновывает роль поверхностного натяжения, ионов и рН в морфогенезе.

Школа Кольцова сыграла видную роль в развитии биофизики в СССР. Его ученики широко разрабатывали вопросы влияния физико-химических факторов внешней среды на клетки и их структуры.

Несколько позже (1934) Родионов С.Р. и Франк Г.М. открыли явление фотореактивации, Завойский (1944) метод электронного парамагнитного резонанса.

Основной итог начального периода развития биофизики – это вывод о принципиальной возможности использования в области биологии основных законов физики как фундаментальной естественной науки о законах движения материи.

Важное общеметодическое научное значение для развития разных областей биологии имеют полученные в этот период экспериментальные доказательства закона сохранения энергии (первый закон термодинамики),

Применение представлений коллоидной химии к анализу некоторых биологических процессов показало, что в основе протоплазмы различными факторами лежит коагуляция биоколлоидов. В связи с возникновением учения о полимерах коллоидная химия протоплазмы переросла в биофизику полимеров, и, особенно, полиэлектролитов.

Появление химической кинетики также вызвало появление аналогичного направления в биологии. Ещё Аррениус – один из основателей химической кинетики, показал, что общие закономерности химической кинетики применимы к изучению кинетических закономерностей в живых организмах и к отдельным биохимическим реакциям.

Успехи применения физической и коллоидной химии при объяснении ряда биологических явлений нашли отражение и в медицине.

Была выявлена роль коллоидных и ионных явлений в воспалительном процессе. Физико-химическую интерпретацию получили закономерности клеточной проницаемости и её изменений при патологических процессах, то есть физико-химическая (биофизическая патология).

С развитием биофизики в биологию проникли и точные экспериментальные методы исследований – спектральные, изотопные, радиоскопические.

 

2. Модели материальной точки и абсолютно твердого тела. Параметры движения (радиус-вектор, перемещение, скорость, ускорение). Принцип инерции и его анализ.

Материальная точка

Во многих кинематических задачах оказывается возможным пренебречь размерами самого тела. Еще раз рассмотрим автомобиль, движущийся из Минска в Брест. Расстояние между этими городами порядка 350 километров, размеры автомобиля - несколько метров, поэтому в такой ситуации при описании положения автомобиля можно не учитывать его размеры - если капот автомобиля находится в Бресте у нужного подъезда нужного дома, то можно считать, что и его багажник находится приблизительно там же. Таким образом, в данной задаче можно мысленно заменить автомобиль его моделью - телом, размеры которого пренебрежимо малы. Такая модель тела очень часто используется в физике и называется материальной точкой.

Материальная точка - это идеальная модель тела, размерами которого в данных условиях можно пренебречь.

Общим у геометрической и материальной точек является отсутствие собственных размеров. Материальную точку, по мере необходимости, можно «наделять» свойствами, которыми обладают реальные тела, например, массой, энергией, электрическим зарядом и так далее.

Одним из критериев применимости модели материальной точки является малость размеров тела по сравнению с расстоянием, на которое оно перемещается. Однако это условие не является абсолютно однозначным. Так, описывая движение Земли вокруг Солнца при расчете ее положения на орбите, размерами Земли можно пренебречь, считать ее материальной точкой. Однако, если нам необходимо рассчитать времена восхода и заката Солнца, модель материальной точки принципиально неприменима, так как это описание требует учета вращения Земли, учета ее размеров и формы.

Рассмотрим еще один пример. Спринтеры соревнуются на стометровой дистанции. Цель описания движения – выявить, кто из спортсменов пробегает дистанцию за меньшее время (задача чисто кинематическая). Можно ли в данной задаче считать бегуна материальной точкой? Его размеры значительно меньше дистанции забега, но достаточно ли они малы, чтобы ими можно было пренебречь? Ответ на эти вопросы зависит от требуемой точности описания. Так, на серьезных соревнованиях время измеряется с точностью 0.01 секунды, за это время бегун смещается на расстояние порядка 10 сантиметров (простая оценка, полученная исходя из средней скорости спринтера 10 м/с). Следовательно, погрешность, с которой определяется положением бегуна (10 см) меньше, чем его поперечные размеры, поэтому модель материальной точки в данном случае неприменима. Не случайно мастера спринтерского бега на финише «бросают грудь вперед», выигрывая драгоценные сотые доли секунды. Таким образом, вторым критерием применимости модели является требуемая точность описания физического явления.

В некоторых ситуациях можно использовать модель материальной точки, даже если размеры тела сравнимы и даже больше расстояний, на которое смещается тело. Это допустимо тогда, когда положение одной точки тела однозначно определяет положение всего тела. Так при скольжении бруска по наклонной плоскости, зная положение его центра (как, впрочем, и любой другой точки) можно найти положение всего тела. Если модель материальной точки оказывается неприменимой, то необходимо использовать другие более сложные модели.

Модель абсолютно твердого тела

При поступательном движении все точки тела получают за один и тот же промежуток времени равные по величине и направлению перемещения, вследствие чего скорости и ускорения всех точек в каждый момент времени оказываются одинаковыми. Соответственно, при поступательном движении все точки тела описывают одинаковые траектории. Поэтому достаточно определить движение одной из точек тела (например, его центра инерции) для того, чтобы охарактеризовать полностью движение всего тела.

При вращательном движении все точки твердого тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Траектории и линейные скорости разных точек различны, но углы поворота и угловые скорости одинаковы. Поскольку угловые скорости всех точек тела одинаковы, то говорят об угловой скорости вращения тела. Для описания вращательного движения нужно задать положение в пространстве оси вращения и угловую скорость тела в каждый момент времени.

При описании вращательного движения считается, что рассматриваемое тело не деформируется, т. е. расстояния между точками тела не изменяются. Такое тело в механике называется абсолютно твердым телом.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: