Противосвертывающие системы крови.




10,

В зависимости от характера сокращений мышцы различают три их вида: изометрическое, изотоническое и ауксотоническое.

Изометрическое сокращение мышцы — когда напряжение мышцы возрастает, а длина ее не изменяется.

Изотоническое сокращение мышцы заключается в укорочении мышцы при ее постоянном напряжении.

Ауксотоническое сокращение мышцы заключается в одновременном изменении длины и напряжения мышцы.

В зависимости от длительности сокращений мышцы выделяют два их вида: одиночное и тетаническое.

Одиночное сокращение мышцы возникает при однократном раздражении нерва или самой мышцы.На кривой одиночного сокращения выделяют три основных периода: 1) латентный — время от момента нанесения раздражения до начала сокращения; 2) период укорочения (или развития напряжения); 3) период расслабления.

Тетаническое сокращение — это длительное сокращение мышцы, возникающее под действием ритмического раздражения, когда каждое последующее раздражение или нервные импульсы поступают к мышце, пока она еще не расслабилась. В основе тетанического сокращения лежит явление суммации одиночных мышечных сокращений

Если повторные импульсы или раздражения поступают в фазу расслабления мышц, возникает зубчатый тетанус. Если повторные раздражения приходятся на фазу укорочения, возникает гладкий тетанус

11 и 12 в 10

13.

в тетради

14.

Сила мышцы определяется максимальным грузом, который мышца в состоянии поднять.

Работа мышцы определяется произведением величины поднятого груза на высоту подъема.

Утомление мышц. При длительной или интенсивной мышечной работе развивается утомление. Признаками его являются снижение амплитуды сокращений, увеличение их латентных периодов, удлинение фазы расслабления и, наконец, отсутствие сокращений при продолжающемся раздражении.

15.

Нейрон – анатомо-гистологическая единица ЦНС. Он состоит из тела и отростков. Тела нейронов составляют серое вещество головного мозга. Их функции заключаются в переработке и хранении информации, а также в питании отростков.

Отростки нейронов:

1. аксоны – длинные маловетвистые отростки, проводящие информацию от тела нейрона к периферии

2. дендриты – короткие, сильноветвистые отростки, передающие информацию от периферии к телу нейрона.

Функции отростков заключаются в проведении информации к телу и от тела нейрона, в обеспечении взаимодействия нейронов с другими структурами.

 

По локализации нейроны подразделяются на центральные и периферические. Центральными называются те нейроны, тела которых лежат в пределах ЦНС. Периферические нейроны принадлежат периферической нервной системе. Они могут залегать в спинно-мозговых ганглиях, в ганглиях черепно-мозговых нервов, в ганглиях вегетативной нервной системы.

В зависимости от выполняемой функции нейроны делятся на 3 основные группы:

1.афферентные (чувствительные)

2.эфферентные (двигательные)

3.вставочные (контактные).

Афферентные нейроны обеспечивают восприятие раздражения и передачу информации в ЦНС.

Эфферентные нейроны обеспечивают передачу информации от ЦНС на периферию.

Вставочные нейроны обеспечивают передачу информации внутри ЦНС (с афферентных нейронов на эфферентные).

В зависимости от эффекта вставочные нейроны подразделяются на:

1.возбуждающие – оказывают возбуждающее влияние на эфферентные нейроны

2.тормозные – оказывают тормозное влияние на эфферентные нейроны.

В зависимости от вида медиатора в синапсе нейрона различают:

· холинергические нейроны (медиатор – ацетилхолин)

· адренергические нейроны (медиаторы – адреналин и норадреналин)

17.

Рефлекс – это ответная реакция организма на раздражитель при участии центральной нервной системы в ответ на возбуждение рецепторов.

Принципы рефлекторной теории:

1.Принцип детерминизма (принцип причинности). Этот принцип подчеркивает значимость раздражителя как фактора являющегося причиной возникновения рефлекса. Без действия раздражителя не может возникнуть рефлекторный ответ.

2.Принцип единства структуры и функции. Этот принцип подчеркивает единство структуры рефлекторной дуги и ее функции. При нарушении целостности любого звена рефлекторной дуги возникает нарушение рефлекса.

3.Принцип единства анализа и синтеза в рефлекторном механизме. Все сигналы,которые поступают в ЦНС сначала анализируются, а затем обобщаются, синтезируются, наблюдается адекватная реакция.

18.

Рефлекторная дуга – последовательно соединенная цепочка нервных клеток, которая обеспечивает осуществление реакции, ответа на раздражение.

Рефлекторная дуга состоит из 5 компонентов: рецепторов, афферентного (чувствительного) пути, рефлекторного центра, эфферентного (двигательного, секреторного) пути, эффектора (рабочего органа).

Рефлекторные дуги могут быть двух видов:

1) простые – моносинаптические рефлекторные дуги (рефлекторная дуга сухожильного рефлекса), состоящие из 2 нейронов (рецепторного (афферентного) и эффекторного), между ними имеется 1 синапс;

2) сложные – полисинаптические рефлекторные дуги. В их состав входят 3 нейрона (их может быть и больше) – рецепторный, один или несколько вставочных и эффекторный.

Обратная связь – это поток импульсов от рецепторов рабочего органа в ЦНС. Он несет информацию об эффективности ответной реакции. За счет обратной связи рефлекторная дуга замыкается в кольцо.

19.

Нервный центр — это совокупность нейронов, которые располагаются в рзличныхотделах НС

Нервные центры состоят из множества нейронов, связанных между собой еще большим множеством синаптических связей. Это обилие синапсов определяют основные, свойства нервных центров: односторонность проведения возбуждения, замедление проведения возбуждения, сум-мацию возбуждений, усвоение и трансформацию ритма возбуждений, следовые процессы и легкую утомляемость.

Односторонность проведения возбуждения в нервных центрах связана с тем, что в синапсах нервные импульсы проходят только в одном направлении — от синаптиче-ского окончания аксона одного нейрона через синаптиче-скую щель на клеточное тело и дендриты других нейронов. Замедление движения нервных импульсов связано с тем, что «телеграфный», т. е. электрический, способ передачи нервных импульсов в синапсах сменяется химическим, или медиаторным, скорость которого в тысячу раз меньше

20.

В ЦНС нервные клетки связаны друг с другом посредством синапсов. Синапс – это структурно функциональное образование, которое обеспечивает передачу возбуждения или торможения с нервного волокна на иннервируемую клетку.

Синапсы по локализации делятся на центральные (расположены в пределах ЦНС, а также в ганглиях вегетативной нервной системы) и периферические (расположены вне ЦНС, обеспечивают связь с клетками иннервируемой ткани).

В функциональном отношении синапсы делятся на возбуждающие, в которых в результате деполяризации постсинаптической мембраны генерируется возбуждающий постсинаптический потенциал, и тормозные, в пресинаптических окончаниях которых выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала.

По механизму передачи синапсы делятся на химические и электрические. Химические синапсы передают возбуждение или торможение за счет особых веществ – медиаторов. В зависимости от вида медиатора химические синапсы подразделяются на:

1.холинергические (медиатор – ацетилхолин)

2.адренергические (медиаторы – адреналин, норадреналин)

По анатомической классификации синапсы делятся на нейросекреторные, нервно-мышечные и межнейронные.

21.

Явление суммации возбуждения в ЦНС открыл И.М.Сеченов (1868) в опыте на лягушке: раздражение конечности лягушки слабыми редкими импульсами не вызывает реакции, а более частые раздражения такими же слабыми импульсами сопровождается ответной реакцией - лягушка совершает прыжок. Различают временную (последовательную) сулилацию и пространственную суммацию (рис. 4.6).

Временна́я суммация. если ВПСП быстро следуют друг за другом, то они суммируются благодаря своему относительно медленному временному ходу (несколько миллисекунд), достигая в конце концов порогового уровня. Временная суммация обусловлена тем, что ВПСП от предыдущего импульса еще продолжается, когда приходит следующий импульс.

Поэтому данный вид суммации называют также последовательной суммацией. Она играет важную физиологическую роль, потому что многие нейронные процессы имеют ритмический характер и, таким образом, могут суммироваться, давая начало надпороговому возбуждению в нейронных объединениях нервных центров.Пространственная суммация. Раздельная стимуляция каждого из двух аксонов вызывает подпороговый ВПСП, тогда как при одновременной стимуляции обоих аксонов возникает ПД, что не может быть обеспечено одиночным ВПСП. Пространственная суммация связана с такой особенностью распространения возбуждения, как конвергенция.

22.

Принцип доминанты открыт А.А.Ухтомским. Изучая ответы скелетной мышцы кошки на электрические раздражения КБП, он обнаружил, что при акте дефекации ответы мышцы прекращаются. Он пришел к выводу, что среди рефлекторных актов, которые могут быть выполнены в данный момент времени, имеются рефлексы, реализация которых является в данный момент времени важнейшей для организма. Центры, участвующие в реализации доминантных рефлексов он назвал «доминантным очагом возбуждения». Свойства доминантного очага: он стойкий (его трудно затормозить); интенсивность его возбуждения усиливается слабыми раздражителями; этот очаг тормозит другие потенциальные доминантные очаги. Доминантность того или иного очага 47 определяется состоянием организма (у голодного животного доминируют пищевые рефлексы).

23.

Открытие явления центрального торможения принадлежит И.М. Сеченову в 1983 г. В опыте на таламической лягушке (т.е. лягушки у которой удален мозг выше таламуса (зрительного бугра)) он определял время сгибательного рефлекса при погружении задней конечности в слабый раствор серной кислоты. Было показано, что время рефлекса значительно увеличивается, если на зрительный бугор предварительно положить кристаллик поваренной соли. Сеченов сделал вывод, что вышележащие Н.Ц. при Споем возбуждении тормозят нижележащие. Торможение в ЦНС препятствует развитию возбуждения или ослабляет протекающее возбуждение.

24.

виды торможения:

1.первичное:

а)постсинаптическое-возникает, если аксон тормозного нейрона образует синапс с телом нейрона и, выделяя медиатор, вызывает гиперполяризацию клеточной мембраны, тормозя активность клетки.

б) Пресинаптическое торможение возникает, когда аксон тормозного нейрона образует синапс с аксоном возбуждающего нейрона, препятствуя проведению импульса.

2.Вторичное торможение возникает в обычных возбудимых структурах и связано с процессом возбуждения.

Виды вторичного поражения.

Запредельное торможение - возникает в нейронах центральной нервной системы в том случае, когда поток информации к телу нейрона выше его работоспособности. Развивается резкое снижение возбудимости нейрона.

Парабиотическое торможение - возникает при действии сильных и длительно действующих раздражителей (парабиоз в тканях). Парабиоз - явление пограничного состояния между гибелью и жизнью ткани (резко падают все свойства ткани, основное свойство - фазное изменение лабильности). Если парабиотический фактор продолжает действовать, ткань гибнет.

Пессимальное торможение - возникает в синапсах центральной нервной системы при действии сильных и частых раздражителей.

Торможение вслед за возбуждением - угнетение нейронов после возбуждения. Результат того, что вслед за пиком потенциала действия возникает период следовой гиперполяризации, который характеризуется снижением возбудимости.

25.

СМ имеет сегментарное строение и метамерный принцип иннервации частей тела. Сегмент – это отрезок СМ с двумя парами передних и задних корешков. По закону Белла-Мажанди, задние корешки СМ – чувствительные, а передние – двигательные. Каждый сегмент иннервирует 3 метамера (части тела), и каждый метамер получает иннервацию от трех сегментов СМ. Такое распределение корешков обеспечивает надежность иннервации, так как полное нарушение функций метамера наступает при повреждении трех сегментов СМ.

26.

Рефлексы делятся на:

1) экстероцептивные (возникают при раздражении агентами внешней среды сенсорных раздражителей);

2) интероцептивные (возникают при раздражении прессо-, меха- но-, хемо-, терморецепторов): висцеро-висцеральные — рефлексы с одного внутреннего органа на другой, висцеро-мышечные — реф- лексы с внутренних органов на скелетную мускулатуру;

3) проприоцептивные (собственные) рефлексы с самой мыш- цы и связанных с ней образований.

4) позотонические рефлексы (возникают при возбуждении вестибулярных рецепторов при изменении скорости движения и положения головы по отношению к туловищу, что приводит к перераспределению тонуса мышц (повышению тонуса раз- гибателей и уменьшению сгибателей) и обеспечивает равнове- сие тела). Исследование проприоцептивных рефлексов производится для определения возбудимости и степени поражения ЦНС.

27.

При полной перерезке спинного мозга развивается картина спинального шока – полноевыпадение функций спинного мозга ниже места перерезки. При этом исчезают движения, падает тонус мышц конечностей, артериальное давление, нет болевой, температурной и тактильной чувствительности. Глубина и длительность спинального шока у разных животных различна и связана с уровнем организации нервной системы: у лягушек – 1-2 минуты, у крысы – 30-40 минут, у собаки – 4-5 дней, у обезьяны и

человека – 4-6 недель. Кроме того, чем выше уровень полной перерезки СМ, тем тяжелее протекает спинальный шок. Ученые по-разному объясняли происхождение спинального шока. Шварц и Шеррингтон считали, что причиной явлений спинального шока является фактор травмы, который приводит к развитию тормозных процессов в спинальных центрах ниже места повреждения. Тренделенбург связывал развитие спинального шока с устранением супраспинальных влияний на органы и ткани ниже места перерезки. Асратян в происхождении спинального шока учитывал оба фактора.

28.

В продолговатом мозге находятся центры иннервации мимических мышц лица, слизистой полости рта, глаза, лабиринта внутреннего уха, а также центры внутренних органов – дыхания, пищеварения, кровообращения. ПМ связан с рецепторами кожи и скелетных мышц. Рефлекторная функция ПМ обеспечивает через регуляцию иннервируемых им внутренних органов постоянство внутренней среды организма – гомеостазис. На уровне ПМ находятся как центры жизненно важных органов – сердечно-сосудистой системы, пищеварительного аппарата (рефлексы сосания, жевания, глотания), дыхания, так и центры защитных рефлексов – чихание, кашель, моргания, слезотечения, потоотделения, рвоты и др. Кроме того, ПМ обеспечивает шейные тонические рефлексы, которые определяют положение головы, и позно-тонические рефлексы – положение тела в пространстве. Через продолговатый мозг проходит самый большой двигательный пирамидный путь, связывающий кору головного мозга со спинным мозгом (кортикоспинальный путь) – его повреждение вызывает утрату движений – паралич. Следовательно, ПМ регулирует работу примитивного СМ.

29.

Децеребрационная ригидность – резкое повышение тонуса мышц-разгибателей и относительное расслабление мышц-сгибателей, возникающие в результате перерезки стволовой части головного мозга — децеребрации. При Д. р. утрачиваются рефлексы, сохраняющие равновесие тела и его способность к движению: туловище и все конечности животного разгибаются и судорожно вытягиваются, голова запрокидывается (т.н. опистотонус).

Причина Д. р.: высвобождение тонических центров продолговатого и спинного мозга из-под сдерживающего контроля ретикулярной формации продолговатого и среднего мозга.

30.

Статические рефлексы поддерживают тонус мышц для сохра- нения позы тела, статокинетические перераспределяют тонус мышц для принятия позы, соответствующей моменту прямо- линейного или вращательного движения;

31.

 

Мозжечок является частью заднего мозга. Повторяя по строению головной мозг, он включает более половины всех нейронов ЦНС, но составляет всего лишь 10% массы головного мозга. Мозжечок связан со всеми отделами ЦНС с помощью афферентных и эфферентных путей. Афферентные пути идут к нему из спинного мозга, продолговатого мозга, варолиевого моста, четверохолмия. От клеток Пуркинье мозжечка (тормозные нейроны коры мозжечка) начинаются пути к ядрам мозжечка – зубчатому, пробковидному, шарообразному. От этих ядер начинаются эфферентные волокна, которые идут к красным ядрам среднего мозга, а отсюда – к коре больших полушарий. Деятельность мозжечка имеет больше отношения к осуществлению движений, позы и поддержания равновесия тела. Однако повреждение мозжечка не влечет за собой полной утраты движений и чувствительности. Итальянский физиолог Лючиани установил, что при удалении мозжечка у животных появляются следующие симптомы:

1. атония – отсутствие тонуса мышц;

2. астения – быстрая утомляемость;

3. атаксия – нарушение координации движений, шаткая, ломкая походка.

4. астазия – отсутствие слитных тетанических сокращений, движения не достигают цели. Далее были обнаружены такие симптомы, как дезэквилибрация (нарушение равновесия), дисметрия (не попадание в цель), адиадохокинез, тремор и др.

Таким образом, функция мозжечка в том, чтобы обеспечить правильное перемещение тела в пространстве, поддержание тонуса мышц на необходимом уровне, устранение лишних движений, сохранение равновесия тела. Они обеспечиваются благодаря рефлексам, которые начинаются с проприорецепторов мышц. Известно также, что мозжечок оказывает влияние и на функции внутренних органов, главным образом, через вегетативную нервную систему – на трофику скелетных мышц.

32.

Сюда относятся таламус (зрительные бугры) и гипоталамус. Таламус является коллектором всех чувствительных путей, идущих в кору головного мозга. Это - высший подкорковый центр всех видов чувствительности тела. В таламусе различают 2 вида ядер: специфические и неспецифические. Специфические ядра делятся на переключающие и ассоциативные (мало изучены). Переключающие ядра имеют прямые связи с определенными зонами коры – зрительными, слуховыми, тактильными, болевыми, вкусовыми и обонятельными, а также связи с корковым представительством внутренних органов. Следует отметить, что области представительств отдельных частей тела и внутренних органов перекрываются в таламусе, поэтому у человека могут появиться отраженные боли. Неспецифические ядра многие ученые относят к ретикулярной формации ствола мозга. Однако Джаспер показал, что неспецифические ядра таламуса участвуют в организации процесса внимания. Кроме этого, таламус является центром формирования ощущений, особенно – болевых. Он же – центр эмоций, непроизвольных выразительных движений лица и тела (при страхе, гневе, радости).

33.

Гипоталамус имеет более 50 пар ядер, которые связаны с ядрами вегетативной нервной системы, со всеми отделами головного мозга и корой. Поэтому считают, что задние ядра гипоталамуса контролируют функции симпатической нервной системы, передние ядра – деятельность парасимпатической нервной системы, серый бугор – терморегуляцию, паравентрикулярные и супраоптические ядра – водно-солевой обмен и уровень глюкозы в крови. Гипоталамус содержит нейросекреторные клетки, которые синтезируют АДГ и окситоцин, а далее эти гормоны накапливаются в задней доле гипофиза. Гипоталамус входит в состав многих функциональных систем, частности, - лимбическую систему.

34.

Это функциональное объединение структур среднего мозга, промежуточного мозга и коры головного мозга для регуляции сложгых поведенческий реакций.

К ней относятся:

1.поясная извилна

2.извилина гипокампа

3.гипоталамус

4.мамелярные тела

5.миндалины

6.свод мозга
Лимбическая система выделена в 1952 году Маклином (США). Она контролирует эмоциональное, социальное, пищевое и половое поведение человека. Лимбическая система сопоставляет сложную сенсорную информацию с памятью, т.е. все ранее приобретенное опытом. Поэтому у человека вырабатывается определенный этикет поведения в обществе, в коллективе, в различных частных ситуациях.

35.

Это – крупные подкорковые ядра, между таламусос и корой. К ним относятся:полосатое тело и базальные ядра. Полосатое тело регулирует деятельность бледного шара, находясь с ним в антагонистических отношениях. А вместе они обеспечивают сложные безусловные двигательные реакции. Раздражение полосатого тела вызывает состояние каталепсии, у больного появляется маскообразное лицо, монотонная речь. Разрушение полосатого тела приводит к беспокойству, суетливости, лишним (ненужным) движениям – хорея, атетоз. Разрушение бледного шара сопровождается признаками, похожими на болезнь Паркинсона – дрожание пальцев, рук, головы и других частей тела. Тонус мышц повышен, поэтому мало движений (гипокинезия), восковидная ригидность, на лице отсутствует мимика, речь скандированная, невнятная.

36.

французский анатом Биша подразделил нервную систему на 2 отдела: 1.соматическую, которая иннервирует скелетные мышцы и 2.вегетативную, которая иннервирует внутренние органы. В конце 19 века Ленгли выделил в вегетативной нервной системе 2 основные части: симпатическую и парасимпатическую. ВНС называется автономной нервной системой, так как имеет свои центры, афферентные и эфферентные пути. Характерным отличием ВНС от соматической нервной системы является наличие двух нейронов: 1)центральный или преганглионарный – в отделах ЦНС) и 2) периферический, который находится в ганглиях (для симпатического отдела), а для парасимпатического отдела - в стенке иннервируемого органа. В настоящее время выделен Ноздрачевым выделен третий отдел ВНС – метасимпатический, (энтеральный), куда входит комплекс интрамуральных нервных сплетений стенки кишечника – ауэрбаховское и мейснеровское.

37.

При возбуждении симпатической нервной системы возникает расширение зрачков, повышение артериального давления, учащение пульса, торможение секреции и моторики желудочно-кишечного тракта, расширение бронхов, усиление потоотделения. Парасимпатическая нервная система оказывает противоположные действия – снижается АД, замедляется пульс, усиливается тонус и перистальтика кишечника, повышается выделение слюны и т. д. И.П.Павлов отмечал 3 вида влияний ВНС на внутренние органы и ткани:

1)пусковое и корригирующее – приводит орган в деятельное состояние и изменяет его функцию;

2)сосудодвигательное – изменяется просвет сосудов, за счет чего увеличивается или уменьшается кровоснабжение органа или ткани;

3)трофическое – изменение тканевого обмена веществ.

Элементы ВНС работают по принципу функционального антагонизма. Часть элементов (преимущественно парасимпатический отдел) обеспечивает поддержание гомеостаза, другая часть (преимущественно симпатический отдел) обеспечивает выведение гомеостатических параметров на иной уровень, за пределы функциональной нормы с тем, чтобы обеспечить поддержание работы того или иного органа. Понятие функционального антагонизма относительно. Функциональный антагонизм влияния симпатического и парасимпатического отделов наблюдается только на конечном уровне регуляции, т. е. на уровне клеток, получающих симпатические и парасимпатические сигналы. На уровне целого организма наблюдается синергизм (совместное, сочетанное действие). Тем более что, ряд органов и тканей снабжаются только либо симпатическими (многие кровеносные сосуды, селезенка, мозговой слой надпочечника), либо парасимпатическими волокнами (афференты некоторых органов чувств), а многие внутренние органы имеют метасимпатическую иннервацию, обеспечивающую регуляцию, вынесенную на периферию.

38.

Система нейрогуморальной регуляции представляет собой единый, тесно связанный механизм. Связь нервной и гуморальной систем регуляции хорошо видна на следующих примерах. Во-первых, природа биоэлектрических процессов является физико-химической, т. е. заключается в трансмембранных перемещениях ионов. Во-вторых, передача возбуждения с одной нервной клетки на другую или исполнительный орган происходит посредством медиатора. И наконец, наиболее тесная связь между этими механизмами прослеживается на уровне гипоталамо-гипофизарной системы.

По химической природе гормоны разделены на три группы: 1) стероиды;

2) полипептиды и белки с наличием углеводного компонента и без него;

3) аминокислоты и их производные.

Установлены четыре основных типа физиологического действия на организм:

кинетическое, или пусковое, вызывающее определенную деятельность исполнительных органов;

метаболическое (изменения обмена веществ);

морфогенетическое (дифференциация тканей и органов, действие на рост, стимуляция формообразовательного процесса);

корригирующее (изменение интенсивности функций органов и тканей).

Существуют два основных механизма действия гормонов на уровне клетки: реализация эффекта с наружной поверхности клеточной мембраны и реализация эффекта после проникновения гормона внутрь клетки.

39.

 

Щитовидная железа.

Имеет две доли, расположенные по обе стороны от трахеи и соединенные спереди от нее полоской железистой ткани – перешейком, который находится на уровне 3-4-го хряща трахеи.

Железа хорошо кровоснабжена. Она покрыта плотной капсулой, которая связана с соседними органами и поэтому может двигаться при глотании и речи, что хорошо заметно при гипертрофии щитовидной железы.

Щитовидная железа вырабатывает следующие гормоны: тироксин, трийодтиронин, тирокальцитонин. Первые два гормона регулируют основной обмен, последний - обмен кальция и фосфора

гормоны щитовидной железы регулируют обмен веществ в органах и тканях

при врожденной гипофункции развивается кретинизм. Это заболевание проявляется задержкой умственного и физического развития. У взрослого человека недостаточность гормонов железы приводит к развитию микседемы, заболевания, характеризующегося снижением основного обмена, увеличением веса, сонливостью, замедленным мышлением и речью. Кожа больного становится влажной, подкожная клетчатка утолщается, волосы истончаются или выпадают. Температура тела понижается, а пульс урежается.

При гиперфункции — базедова болезнь.

40.

передняя доля гипофиза вырабатывает гормоны, которые регулируют секрецию всех остальных эндокринных желез.

- Гормон роста (соматотропный гормон) регулирует рост тела.

- Тиреотропный гормон воздействует на щитовидную железу и способствует образованию тироксина.

- Адренокортикотропный гормон (АКТГ) стимулирует кору надпочечников и обеспечивает секрецию кортизола.

- Гонадотропные гормоны:

- Фолликулостимулирующий гормон (ФСГ) инициирует развитие яичниковых (граафовых) фолликулов, а также способствует образованию сперматозоидов в яичках.

- Лютеонизирующий гормон (ЛГ) контролирует секрецию эстрогена и прогестерона в яичниках и тестостерона в яичках.

- Лютеотропный гормон (пролактин) регулирует секрецию молока и способствует сохранению желтого тела беременности.

41.

в задней доле гипофиза вырабатываются: антидиуретический гормон (АДГ), регулирующий количество жидкости, проходящей через почки, а также окситоцин, стимулирующий сокращение матки во время родов и способствующий образованию грудного молока.

42.

Относится к железам со смешанной функцией. Эндокринной частью поджелудочной железы являются островки Лангерганса, расположенные преимущественно в хвостовой части железы. Бета-клетки островков Лангерганса образуют гормон инсулин, альфа-клетки синтезируют глюкагон.

Инсулин. Под действием гормона происходит уменьшение концентрации сахара в крови. Образование инсулина регулируется уровнем глюкозы в крови. Гипергликемия приводит к увеличению поступления инсулина в кровь. Гипогликемия уменьшает образование и поступление гормона в сосудистое русло.

Недостаточность внутрисекреторной функции поджелудочной железы приводит к развитию сахарного диабета.

Глюкагон. По характеру своего действия на обмен углеводов он является антагонистом инсулина. Под влиянием глюкагона происходит расщепление гликогена в печени до глюкозы. В результате этого концентрация глюкозы в крови повышается. Кроме того, глюкагон стимулирует расщепление жира в жировой ткани.

43.

К мужским половым гормонам (андрогенам) относятся тестостерон и андростерон. Они стимулируют рост и развитие полового аппарата, обеспечивают появление вторичных половых признаков, обеспечивают нормальное созревание сперматозоидов, влияют на белковый и жировой обмен, повышают интенсивность обменных процессов в организме, отвечают за половые рефлексы и поведенческие реакции.

Яичники вырабатывают женские половые гормоны (эстрогены) и прогестерон. Эстрогены способствуют развитию первичных и вторичных половых признаков. Прогестерон обеспечивает наступление и нормальное течение беременности за счет подготовки слизистой оболочки матки и снижения чувствительности матки ко внешним и внутренним раздражителям.

44.

Парные железы, расположенные над верхними концами почек. В каждой железе имеется два слоя; наружный - корковое вещество и внутренний - мозговое вещество.

Гормоны коркового вещества – кортикостероиды вырабатывают 3 зоны:

Клубочковая зона, самая поверхностная, вырабатывает гормоны – минералокортикоиды (альдостерон, дезоксикортикостерон), которые влияют на водно-солевой обмен, тем самым действуя на почки. Избыток этих гормонов приводит к задержке воды и повышению АД, а их недостаток - к обезвоживанию организма.

Пучковая зона (средняя) выделяет гормоны - глюкокортикоиды (кортизон и кортикостерон), которыеподавляют воспалительные реакции и подавляют аллергические проявления. Также глюкокортикоиды влияют на углеводный обмен, стимулируют синтез гликогена в мышцах, тем самым повышая работоспособность. О

Сетчатая зона вырабатывает половые гормоны - андрогены (мужские) и эстрогены и прогестерон (женские). Они влияют на развитие скелета и формирование вторичных половых признаков.

Она характеризуется, кроме бронзовой окраски кожи (отсюда название), резким похуданием, мышечной слабостью, гипотонией.

Мозговое вещество надпочечников вырабатывает катехоламины - адреналин и норадреналин. Главный гормон - адреналин - имеет широкий диапазон действия. Он оказывает влияние на ССС, в частности сужает сосуды, тормозит движения пищеварительного тракта, вызывает расширение зрачка, восстанавливает работоспособность утомлённых мышц, усиливает углеводный обмен, суживает сосуды кожи и другие периферические сосуды.

Второй гормон - норадреналин - способствует поддержанию тонуса кровеносных сосудов. Норадреналин, кроме того, вырабатывается в синапсах и участвует в передаче возбуждения с симпатических нервных волокон на иннервируемые органы.

 

45.

Кровь представляет собой непрозрачную жидкость, состоящую из плазмы и форменных элементов.

Основные функции крови: транспортная; защитная; регуляторная. Транспортная функция. Кровь – это среда, осуществляющая транспорт различных веществ в организме. Кровь осуществляет транспорт газов СО2 и О2 – обеспечивает дыхание. Кровь осуществляет трофическую функцию, обеспечивая органы, ткани и клетки питательными веществами. Кровь выполняет функцию по удалению продуктов метаболизма, транспортируя их к органам выделения. Кровь осуществляет транспорт гормонов, витаминов и ферментов. Кровь обеспечивает распределение тепла, благодаря высокой теплоемкости. Регуляторная функция связана с поступлением в циркулирующую кровь гормонов, БАВ, продуктов обмена. Обеспечивает относительное постоянство внутренней среды (гомеостаз). Для обеспечения гомеостаза состав и физические свойства циркулирующей крови должны иметь относительное постоянство. Этим обеспечивается постоянство внутренней среды: постоянство концентраций растворенных веществ; температуры; рН. Защитная функция. Остановка кровотечения путем свертывания (гемостаза). Наоборот, сохранение крови в жидком состоянии (лизис тромбов). Обезвреживание чужеродных агентов. Кровь обеспечивает защитную функцию организма с помощью фагоцитоза, цитотоксического эффекта и образования антител /

46.

Общее количество крови в организме взрослого человека составляет в среднем 6—8%, или 1/13, массы тела, т. е. приблизительно 5—6 л. У детей количество крови относительно больше: у новорожденных оно составляет в среднем 15% от массы тела, а у детей в возрасте 1 года —11%. В физиологических условиях не вся кровь циркулирует в кровеносных сосудах, часть ее находится в так называемых кровяных депо (печень, селезенка, легкие, сосуды кожи). Общее количество крови в организме сохраняется на относительно постоянном уровне.

Периферическая кровь состоит из жидкой части — плазмы 55-60% и взвешенных в ней форменных элементов 40-45%

47.

Гематокритный показатель — это количество форменных элементов крови в % от общегообъема крови.

У мужчин — 44%-52%, у женщин — 36%-43%, у нов детей — 44%-62%.

В состав плазмы крови входят вода (90—92%) и сухой остаток (8—10%). Сухой остаток состоит из органических и неорганических веществ.

К органическим веществам плазмы крови относятся:

1) белки плазмы — альбумины (около 4,5%), глобулины (2—3,5%), фибриноген (0,2—0,4%). Общее количество белка в плазме составляет 7—8%;

2) небелковые азотсодержащие соединения

3) безазотистые органические вещества

4) ферменты и проферменты

Неорганические вещества плазмы крови составляют около 1 % от ее состава. К этим веществам относятся преимущественно катионы — Ка+, Са2+, К+, Мg2+ и анионы Сl, НРO4, НСО3

48.

Белки представлены альбуминами (4,5%), глобулинами (2–3,5%) и фибриногеном (0,2–0,4%).

Белки плазмы крови выполняют разнообразные функции:
1.создают онкотическое давление
2.обеспечение агрегатного состояния крови;
3.обеспечивает рН
4.создают иммунитет
5.транспортная

функция;
6.питательная функция;
7.участие в свертывании крови.

Альбумины осуществляют питательную функцию, являются резервом аминокислот для синтеза белков. Альбумины синтезируются в печени

Глобулины подразделяются на несколько фракций: альфа-, бетта- и гамма-глобулины.
альфа-глобулины включают гликопротеины.Эта группа белков транспортирует гормоны, витамины, микроэлементы, липиды. К а-глобулинам относятся эритропоэтин, плазминоген, протромбин.

бетта-глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов. К этой фракции относится белок трансферр



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-01-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: