Строение клеточной мембраны




Любую клетку отграничивает плазматическая мембрана. Она настолько тонка, что её невозможно различить под световым микроскопом. Плазматическая мембрана, легко поврежденная микроиглой, способна к восстановлению, но при более грубом повреждении цитоплазма вытекает через прокол наружу и клетка погибает.

Согласно современной теории, плазматическая мембрана состоит из бислоя полярных липидов и встроенными в него молекулами глобулярных белков. Благодаря этим слоям мембрана, обладает эластичностью и относительной механической прочностью. Плазматическая мембрана большинства типов клеток состоит из трёх слоёв шириной примерно 2,5 нм каждый. Подобная структура, называемая “элементарной мембраной”, обнаружена и в большинстве внутриклеточных мембран. Биохимический анализ показал, что липиды и белки содержаться в них в отношении 1.0: 1.7. Основную массу липидных компонентов образуют фосфолипиды, преимущественно лецитин и кефалин (рис. 1).

Плазмолемма - оболочка клетки, выполняющая отграничительную, транспортную и рецепторную функции. Она обеспечивает механическую связь клеток и межклеточные взаимодействия, содержит клеточные рецепторы гормонов и других сигналов окружающих клетку среды, осуществляет транспорт веществ в клетку из клетки как по градиенту концентраций - пассивный перенос, так и с затратами энергии против градиента концентраций - активный перенос.

В состав оболочки входят плазматическая мембрана, немембранный комплекс - гликокаликс и субмембранный опорно-сократительный аппарат.

В гликокаликсе содержится около 1 % углеводов, молекулы которых образуют длинные ветвящиеся цепи полисахаридов, связанные с белками мембраны. Находящиеся в гликокаликсе белки - ферменты участвуют в конечном внеклеточном расщеплении веществ. Продукты этих реакций в виде мономеров поступают в клетку. При активном переносе транспорт веществ в клетку осуществляется или поступлением молекул в виде раствора - пиноцитоз, или захватом крупных частиц - фагоцитоз.

В соответствии с функциональными и морфологическими особенностями тканей оболочка клеток образует характерные для них аппараты межклеточных контактов. Основные их формы: простой контакт (или зона слипания), плотный (замыкающий) и щелевой контакт. Разновидностью плотного контакта являются десмосомы.

Биологичекие мембраны действуют как диффузные барьеры. Благодаря своей избирательной проницаемости для ионов К+, Nа+, Cl- и т.п., а также высокомолекулярных соединений они разграничивают внутри- и межклеточные зоны реакций и создают электрические градиенты и градиенты концентрации веществ. Это делает возможным существование упорядоченных биологических структур со специфическими функциями.

Рис. 1. Структуры плазматической мембраны

Важнейшее свойство клетки и ее плазмолеммы — формирование межклеточных соединений (контактов).

Простой неспециализированный (адгезионный) контакт образуется за счет элементов гликокаликса — трансмембранными гликопротеинами взаимодействующих мембран. Простые контакты не обеспечивают высокой прочности межклеточных взаимодействий. Иногда плазмолеммы контактирующих клеток в области простого контакта образуют интердигитации (взаимные пальцевидные внедрения участков цитоплазмы), которые придают контакту большую прочность.

Плотный (запирающий) контакт характерен для клеток однослойных эпителиев. При формировании плотного контакта внешние слои мембран в отдельных участках максимально сближаются. В точках соприкосновения мембран располагаются интегральные белки плазмолемм соседних клеток. В ряде случаев (в эпителии кишечного типа) плотные контакты формируют сплошные полосы, получившие название замыкающих пластинок. Эти контакты, помимо прочного соединения клеток, изолируют межклеточные щели и делают их плохо проницаемыми для ионов и молекул.

Десмосома. В межклеточной щели в области десмосомы располагается электронно-плотный слой, образованный взаимодействующими молекулами интегральных гликопротеинов плазмолемм соседних клеток. С помощью катионов кальция молекулы сцеплены в межклеточном пространстве. Десмосомы являются характерными контактами эпителиальных, эндотелиальных клеток, кардиомиоцитов и других, обеспечивая прочное сцепление взаимодействующих структур.

Щелевой контакт. В отличие от всех рассмотренных выше он представляет собой коммуникационное (обменное) соединение клеток. Через щелевой контакт происходит прямой обмен химическими веществами между клетками. Плазмолеммы соседних клеток в зоне щелевого контакта сближены до 2-3 нм.

Синаптические контакты или синапсы — специфические контакты между нервными клетками (межнейронные синапсы) или между нервными и другими клетками (нервно-мышечные синапсы и другие). Функциональная роль синаптических контактов заключается в передаче возбуждения или торможения с одной нервной клетки на другую или с нервной клетки на иннервируемую клетку.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: