Физико-механические свойства модифицированных эпоксидных композиций




 

Так как модификаторы влияют на процессы структурообразования эпоксидных композиций, следовательно, возможно изменение их физико-механических свойств.

При введение в эпоксидный олигомер и ГМА ТХЭФ образцы характеризуются повышенной устойчивостью к изгибающим и ударным нагрузкам. Однако, как было отмечено ранее, увеличение содержания ТХЭФ до 30, 40 масс.ч. нежелательно.

Деформационно-прочностные свойства зависят от количества наполнителя в композиции. Увеличение степени наполнения полимерной матрицы может способствовать снижению прочности при изгибе.

При исследовании влияния количества НБ на комплекс физико-механических свойства установлено, что при увеличении НБ в составе композиции до 50 масс. ч. приводит к возрастанию разрушающего напряжения при изгибе ~ в3 раза, а ударной вязкости - ~ в7 раз. Увеличение количества наполнителя до 60 масс.ч. приводит к снижению прочностных свойств, таблица 8.

Таблица 8

Физико-механические свойства эпоксидных композиций

Состав композиции, масс.ч., отвержденной 15 масс.ч. ПЭПА Напряжение при изгибе, sи, МПа Ударная вязкость, ауд, кДж/м2
100ЭД-20 17*  
30ЭД-20+30ГМА+10ТХЭФ    
30ЭД-20+30ГМА+20ТХЭФ    
30ЭД-20+30ГМА+30ТХЭФ    
30ЭД-20+30ГМА+40ТХЭФ    
30ЭД-20+30ГМА+10ТХЭФ+40НБ 7*  
30ЭД-20+30ГМА+10ТХЭФ+50НБ 9*  
30ЭД-20+30ГМА+20ТХЭФ+30НБ 5*  
30ЭД-20+30ГМА+20ТХЭФ+40НБ 35*  
30ЭД-20+30ГМА+20ТХЭФ+50НБ 42*  
30ЭД-20+30ГМА+20ТХЭФ+60НБ 38*  

Примечание: * - разрушение образца.

 

Влияние замедлителей горения на горение эпоксидных композиций

 

Эпоксидные смолы относятся к коксующимся при горении полимерам, однако у некоторых из них кокса образуется очень мало. Горючесть смол, их способность к коксообразованию зависит от типа эпоксидной смолы [25] и обусловлена содержанием в составе продуктов деструкции значительного количества горючих соединений. При воздействии температуры вначале наблюдается улетучивание не сшитых эпоксидных групп, а затем разлагается высокомолекулярная фракция, освобождая оксид углерода, метан, этан, этилен, пропилен, ацетон, формальдегид, ацетальдегид, бензол [19]. Для снижения горючести эпоксидных смол перспективным способом является применение ЗГ, содержащих атомы галогена, фосфора, азота.

Однако количество эффективных в эпоксидных композициях ЗГ невелико. Принятые в ряде стран законы об охране окружающей среды, запрещающие использование галогенсодержащих ЗГ обусловливают необходимость поиска новых эффективных ЗГ, особенно полифункционального назначения.

Поведение разработанных материалов при воздействии на них повышенных температур исследовали методом ТГА.

ТХЭФ является термически достаточно устойчивым пластификатором и разлагается в интервале температур 160-320оС, табл. 9. Причем в интервале температур 160-240оС завершается полное дегидрохлорирование, протекающее эндотермически, и потери массы соответствуют содержанию Cl в ТХЭФ (35 масс%). Видимо, одновременно с дегидрохлорированием протекают процессы структурирования и в интервале температур 240-320оС проходит разложение образовавшихся структурированных структур, что подтверждается образованием КО, табл. 9 и экзотермичностью процесса.

Кроме того, ТХЭФ разлагается в температурном интервале, близком к температуре разложения самой смолы, что может обеспечить его эффективное влияние на процессы горения эпоксидной смолы.

Нитрид бора устойчив в атмосфере кислорода ~ до 700оС. Чаще всего НБ входит в состав жаропрочных и жаростойких композиционных материалов.

Введение ТХЭФ в эпоксидную смолу оказывает влияние на поведение при пиролизе и проявляется в следующем:

- повышается термоустойчивость материала, что подтверждается возрастанием температуры начала деструкции на 25оС, таблица 9;

- увеличивается выход карбонизованного остатка по окончании основной стадии деструкции, соответственно, снижается количество летучих продуктов, табл.9, среди которых большую часть составляют горючие соединения.

 

Таблица 9

Параметры процесса деструкции

Состав, масс. ч Температура начала деструкции, оС Выход КО, % при (ТК) Выход коксового остатка, % при Т, оС
       
ГМА   18 (450)        
ТХЭФ   45 (320)        
ЭД-20+15ПЭПА   53 (390)        
30ЭД-20+30ГМА+ 20ТХЭФ+15ПЭПА   58 (450)        

 

Выявленное влияние исследуемых компонентов на термолиз эпоксидной смолы проявляется и в поведении материала при горении его на воздухе.

Потери массы при горении на воздухе снижаются с 78 % для немодифицированной смолы до 38-45%, для пластифицированных и наполненных композиций, таблица 10.

Таблица 10

Показатели горючести эпоксидных композиций

Состав композиции, масс.ч. Время поджигания, tпод Потери массы, Dm, % КИ, % об.
ЭД-20+15ПЭПА      
30ЭД-20+30ГМА+20ТХЭФ+15ПЭПА      
30ЭД-20+30ГМА+10ТХЭФ+40НБ+15ПЭПА      
30ЭД-20+30ГМА+10ТХЭФ+50НБ+15ПЭПА      
30ЭД-20+30ГМА+20ТХЭФ+40НБ+15ПЭПА      
30ЭД-20+30ГМА+20ТХЭФ+50НБ+15ПЭПА      
30ЭД-20+30ГМА+20ТХЭФ+60НБ+15ПЭПА      

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: