Биопотенциалы. Микроэлектродный метод регистрации биопотенциалов. Формула Нернста для расчёта биопотенциалов (её вывод), уравнение Гольдмана.




Одна из важнейших функций биологической мембраны - ге­нерация и передача биопотенциалов. В процессе жизнедеятельности в клетках и тканях могут возникать разности электрических потенциалов:

1) окислительно-восстановительные потенциалы - вслед­ствие переноса электронов от одних молекул к другим;

2) мембранные - вследствие градиента концентрации ионов и переноса ионов через мембрану.

Стеклянный микроэлектрод представляет собой стеклянную микропипетку с оттянутым очень тонким кончиком.

Металлический электрод такой толщины пластичен и не может проколоть клеточную мембрану, кроме того он поляризует­ся. Для исключения поляризации электрода используются не­поляризующиеся электроды, например серебряная проволока, покрытая солью AgCl. В раствор КС1 или NaCI (желатинизированный агар-агаром), заполняющий микроэлектрод. Второй электрод - электрод сравнения - располагается в ра­створе у наружной поверхности клетки. Регистри­рующее устройство, содержащее усилитель постоянного тока, измеряет мембранный потенциал:

Микроэлектродный метод дал возможность измерить биопо­тенциалы не только на гигантском аксоне кальмара, но и на клет­ках нормальных размеров: нервных волокнах других животных, клетках скелетных мышц, клетках миокарда и других.

Отсюда легко получить формулу Нернста для равновесного мембранного потенциала

Уравнение Гольдмана:

Биопотенциал покоя, его физическая природа. Уравнение Нернста-Планка для состояния покоя. Роль градиентов концентрации и электрического потенциала при формировании потенциала покоя.

Потенциал покоя - стационарная разность электрических по­тенциалов, регистрируемая между внутренней и наружной поверхностями мембраны в невозбужденном состоянии. Потенциал покоя определяется разной концентрацией ионов по Разные стороны мембраны и диффузией ионов через мембрану. Если концентрация какого-либо иона внутри клетки С отлич­ив от концентрации этого иона снаружи С и мембрана проница­ла для этого иона, возникает поток заряженных частиц через Мембрану, вследствие чего нарушается электрическая нейтраль­ность системы, образуется разность потенциалов внутри и снаружи клетки ФИм=ФИвн-Финар, которая будет препятствовать дальней­шему перемещению ионов через мембрану. При установлении равновесия выравниваются значения электрохимических потен­циалов по разные стороны мембраны:

Отсюда легко получить формулу Нернста для равновесного мембранного потенциала:

Переписав уравнение Гольдмана в виде:

Уравнение Нернста стало:

С учетом работы электрогенных ионных насосов для мембранного потенциала было получено уравнение Томаса: где m - отношение количества ионов натрия к количеству ионов калия, перекачиваемых ионными насосами через мембрану. Чаще всего K+-Na+-АТФаза работает в режиме, когда m = 3/2, м всегда больше 1.

Коэффициент m > 1 усиливает вклад градиента концентра­ции калия в создание мембранного потенциала, поэтому мемб­ранный потенциал, рассчитанный по Томасу, больше по абсо­лютной величине, чем мембранный потенциал, рассчитанный по Гольдману, и дает совпадение с экспериментальными значе­ниями для мелких клеток.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: