Тема: Приложения определенного интеграла.




Лекция

Задание: изучить материал лекции и выписать по одному примеру на вычисление площади фигуры и вычисление объёма тела.

1. Вычисление площадей плоских фигур.

Определенный интеграл вычисляется по формуле Ньютона-Лейбница:

= F(a)-F(b)

- соответственно верхний и нижний пределы интегрирования, они пишутся и читаются снизу вверх, а в формулу подставляются сверху вниз!)

Основные свойства определенного интеграла:

1. При перестановке пределов интегрирования изменяется знак интеграла:

2. Отрезок интегрирования можно разбивать на части:

3. Определенный интеграл от алгебраической суммы функций равен алгебраической сумме их определенных интегралов.

4. Постоянный множитель можно выносить за знак интеграла.

Пример 1.

= =27-8=19.

 

 
 


у

 

 

+ +

 

0 a - b x

 

Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) < 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) > 0, то площадь имеет знак “+”.

Для нахождения суммарной площади используется формула .

Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.

 

Пример 2

Вычислить площадь фигуры, ограниченной линиями , , и осью

 

Решение:
Выполним чертеж:
На отрезке график функции расположен над осью , поэтому:

Ответ:
Примечание: В задачах на нахождение площадей преподаватели часто требуют записывать ответ не только точно, но и, в том числе, приближенно.

Пример 3

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение: Выполним чертеж:

Если криволинейная трапеция полностью расположена под осью , то её площадь можно найти по формуле:
В данном случае:

Ответ:

Пример 4

Найти площадь плоской фигуры, ограниченной линиями , .

Решение: Сначала нужно выполнить чертеж. При построении чертежа в задачах на площадь нас интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:

Нижний предел интегрирования , верхний предел интегрирования .
Можно построить линии поточечно, при этом пределы интегрирования выясняются по чертежу.

Выполним чертеж:

 

Искомая фигура ограничена параболой сверху и прямой снизу.

На отрезке , по соответствующей формуле:

Ответ:

Пример 5 Вычислить площадь фигуры, ограниченной линиями , , , .

Решение: Сначала выполним чертеж:

1) На отрезке над осью расположен график прямой ;

2) На отрезке над осью расположен график гиперболы .

Совершенно очевидно, что площади можно приплюсовать, поэтому:

Ответ:

Пример 6

Вычислить площадь фигуры, ограниченной линиями ,

Представим уравнения в виде , и выполним поточечный чертеж:

Найдем точки пересечения прямой и параболы .

Для этого решаем уравнение:


,

Действительно, .

На отрезке , по соответствующей формуле:

Ответ:

2. Вычисление объемов тел.

Вычисление объема тела по известным площадям его параллельных сечений.

 

Q(xi-1)

Q(xi)

 

 

a xi-1 xi b x

 

Пусть имеется тело объема V. Площадь любого поперечного сечения тела Q, известна как непрерывная функция Q = Q(x). Разобьем тело на “слои” поперечными сечениями, проходящими через точки хi разбиения отрезка [a, b]. Т.к. на каком- либо промежуточном отрезке разбиения [xi-1, xi] функция Q(x) непрерывна, то принимает на нем наибольшее и наименьшее значения. Обозначим их соответственно Mi и mi.

Если на этих наибольшем и наименьшем сечениях построить цилиндры с образующими, параллельными оси х, то объемы этих цилиндров будут соответственно равны MiDxi и miDxi здесь Dxi = xi - xi-1.

Произведя такие построения для всех отрезков разбиения, получим цилиндры, объемы которых равны соответственно и .

При стремлении к нулю шага разбиения l, эти суммы имеют общий предел:

Таким образом, объем тела может быть найден по формуле:

Недостатком этой формулы является то, что для нахождения объема необходимо знать функцию Q(x), что весьма проблематично для сложных тел.

 

Пример: Найти объем произвольной пирамиды с высотой Н и площадью основания S.

 
 


Q S

 

x H x

 

 

При пересечении пирамиды плоскостями, перпендикулярными высоте, в сечении получаем фигуры, подобные основанию. Коэффициент подобия этих фигур равен отношению x/H, где х – расстояние от плоскости сечения до вершины пирамиды.

Из геометрии известно, что отношение площадей подобных фигур равно коэффициенту подобия в квадрате, т.е.

Отсюда получаем функцию площадей сечений:

Находим объем пирамиды:

 

3. Объем тел вращения.

 

Рассмотрим кривую, заданную уравнением y = f(x). Предположим, что функция f(x) непрерывна на отрезке [a, b]. Если соответствующую ей криволинейную трапецию с основаниями а и b вращать вокруг оси Ох, то получим так называемое тело вращения.

 

y = f(x)

 

 

x

 

Т.к. каждое сечение тела плоскостью x = const представляет собой круг радиуса , то объем тела вращения может быть легко найден по полученной выше формуле:

Пример: Найти объем шара радиуса R.

y

 

 

R y

-R 0 x R x

 

 

В поперечных сечениях шара получаются окружности переменного радиуса у. В зависимости от текущей координаты х этот радиус выражается по формуле .

Тогда функция площадей сечений имеет вид: Q(x) = .

Получаем объем шара:

.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-12-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: