Классификация систем координат




Глава I. Аналитический обзор действующих систем координат

Общие сведения о системах координат

Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В общем и целом систему координат можно определить как опорную систему для определения положения точек в пространстве или на плоскостях и поверхностях относительно выбранных осей, плоскостей или поверхностей.

Систему координат широко применяют во многих отраслях науки.

В математике координаты - это совокупность чисел, сопоставленных точками многообразия в некоторой карте определённого атласа.

В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.

В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана).

В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической

(галактическая плоскость).

Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).

Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции.

Классификация систем координат

Так как мы уже выяснили, существует множество систем координат, следовательно, их нужно каким то образом классифицировать.

Классифицировать системы координат можно по:

· Форме

1. прямоугольная (плоская) система координат: XY(рис. 1)

За основную плоскость XOY в данном случае принята плоскость земного экватора. Основная координатная ось OX направлена в определенную точку. Ось OY расположена в плоскости земного экватора под углом 90º к востоку от принятого начального меридиана. Ось OZ совмещена с северным направлением оси вращения Земли.

Прямоугольная СК (рис. 1)

2. Пространственная прямоугольная система координат: XYZ (рис. 2)

Начало пространственных прямоугольных координат либо определяется под условием совмещения с центром масс Земли (в общеземных системах), либо находится вблизи от него.

Ориентировка оси Z в каждой системе координат выполняется с учетом ориентировки средней оси вращения Земли. При установлении системы среднего полюса, в том числе и полюса в Системе МУН, не накладывают условия прохождения средней оси вращения через центр масс Земли, поэтому и в референцных и в общеземных системах оси Z не совпадают со средней осью вращения, а параллельны ей.

Плоскость XOY перпендикулярна оси Z и средней оси вращения Земли. Плоскость XOZ выбирается под условием ее параллельности плоскости начального астрономического меридиана.

 

Пространственная прямоугольная СК (рис. 2)

3. Геодезическая (эллипсоидальная) система координат: BLH (рис.3)

B– геодезическая широта, угол между нормалью к эллипсоиду, проведенной через заданную точку M на поверхности Земли, и плоскостью экватора;

L – геодезическая долгота, двугранный угол между плоскостями гринвичского G и заданного геодезического меридианов;

H – геодезическая высота над референц-эллипсоидом, расстояние по нормали от поверхности эллипсоида до точки M.

Геодезическая СК (рис. 3)

 

 

· Назначению

1. Общеземные (мировые) WGS 84, ПЗ 9011, ITRS

Общеземными принято называть такие системы координат, которые получены под условием совмещения их начала с центром масс Земли. Они устанавливаются в отношении территории, покрывающей весь земной эллипсоид. И используется для решения общеземных задач. Наиболее удобными являются географические координаты (широта и долгота) отсчитываемые от поверхности экватора и начального меридиана в виде дуг, которым соответствуют центральные углы.

2. Государственные (СК-95, СК-63, ГСК-2011)

Эта система координат ограничивается территорией одного государства и используется, для осуществления геодезических и картографических работ внутри этого государства. В РФ в качестве координатной поверхности в этой системе используется поверхность эллипсоида Красовского.

3. Местные (МСК-50, МСК-50.2, Московская)

Под местной системой координат понимается условная система координат, устанавливаемая в отношении ограниченной территории, не превышающей территорию субъекта Российской Федерации, начало отсчета координат и ориентировка осей координат которой смещены по отношению к началу отсчета координат и ориентировке осей координат единой государственной системы координат, используемой при осуществлении геодезических и картографических работ. Местные системы координат устанавливаются для проведения геодезических и топографических работ при инженерных изысканиях, строительстве и эксплуатации зданий и сооружений, межевании земель, ведении кадастров и осуществлении иных специальных работ. Обязательным требованием при установлении местных систем координат является обеспечение возможности перехода от местной системы координат к государственной системе координат, который осуществляется с использованием параметров перехода (ключей). Каждая местная система координат может создаваться с одной или несколькими трех или шести градусными зонами. Параметры местных систем координат и ключи перехода к государственной системе координат (формулы и правила, по которым координаты точек в одной системе можно получить в другой системы) устанавливает Росреестр по согласованию с Минобороны РФ.

· Началу отсчета:

1. Геоцентрические X, Y, Z, с началом отсчета в центре масс Земли;

2. Референцные (квазигеоцентрические) X, Y, Z, с началом вблизи центра масс Земли, в центре принятого референц-эллипсоида;

3. Топоцентрические X, Y, Z, с началом отсчета на поверхности Земли в точке наблюдения.

· Основной координатной плоскости XOY

Различаются по выбору основной координатной плоскости

1. Экваториальные – в плоскости экватора на определенную эпоху;

Различают первую и вторую экваториальные системы координат. Первая является вращающейся, т. е. участвует в суточном вращении Земли, вторая – неподвижная, т. е. не участвует в суточном вращении Земли.

2. Горизонтальные – в плоскости местного горизонта;

3. Орбитальные – в плоскости орбиты.

· Направление ориентировки осей координат относительно точек пространства СК делятся на

1. Звездные, если они ориентированы по далеким звездам

2. Квазарные, если оси ориентированы по далеким естественным

радиоисточникам (квазарам);

3. Земные, если оси ориентированы по неподвижным точкам земной

 

· Время, к которому относится положение точки весеннего равноденствия γ и направление оси z:

1. Средние, принятые на определенную эпоху (например на эпоху 2000 года);

2. Истинные, отнесенные к истинной точке весеннего равноденствия;

3. Мгновенные, соответствующие положению оси вращения на момент наблюдения.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: