Геометрический смысл определенного интеграл




Пусть на отрезке [а; Ь] задана непрерывная функция у = f(x) >= О.Фигура, ограниченная сверху графиком функции у = f(x), снизу осью Ох, сбоку - прямыми Х = а и Х = Ь, называется криволинейной трапецией. Найдем площадь этой трапеции.

S= lim Σi=1 n f(ci)∆Xi т.е S=∫a b f(x) dx

λ →0

n→∞

оnределенный. uнтеграл от неотрицательной функции численно равен площади криволинейной трапецией. В этом состоит геометрический смысл определенного интеграла.

13Свойства определенного интеграла. Теорема о среднем 1. Если с – постоянное число и функция f(x) интегрируема на отрезке [a; b] ∫ab c *f(х) dx = c * ∫ f(х) dx, постоянный множитель с можно выносить за знак определенного интеграла.

2. Если функция f(x) интегрируема на отрезке [a; b], тогда интегрируема на [a; b] и их сумма ∫ab (f1 (х) + f2(X)) dx =∫abf1 (х) dx +∫ab f2(X) dx, т. е. интеграл от суммы равен сумме интегралов.

3. ∫ab f(x) dx = - ∫ab f(x) dx.

4.Если функция f(x) интегрируема на [а; Ь] и а < с < Ь, то ∫a b f(x) dx =∫ac f(x) dx +∫cb f(x) dx,

5.«Теорема о среднем». Если функция f(x) непрерывна на отрезке[а; Ь], то существует точка с?[а; Ь] такая, что ∫ab f(x) dx = f(c). (Ь - а).

6. Если f(x) сохраняет знак на отрезке [а; Ь], где а < Ь,

Интеграл ∫ab f(х) dx имеет тот же знак что и функция Так, если f(x) ≥0 на отрезке [а; Ь], то ∫ab f(x) dx ≥ 0

7. неравенство между непрерывными функциями на отрезке [а; Ь],(а < Ь) можно интегрировать.Так, если f1 (х) < f2(X) при x? [а; Ь], то ∫ab f1(x) dx< ∫ab f2(x) dx

 

14 Необходимое условие интегрируемости функции. Функция Дирихле. \

Необход. Условие: Если фенкция интегрируема, то она ограничена.

Ф-я Дирихле: Фу́нкция Дирихле́ — функция (....), принимающая значение 1, если аргумент есть рациональное число, и значение 0, если аргумент есть иррациональное число f(x) = 1если Х- рациональное Х ?[ab]

0 если Х- иррациональное

1) пусть пси –рациональн,? [xi-1; xi], ɓt (знак сигма по t) ɓt (T; {псиi}) = Σi=1 n f(псиi)∆Xi =

λ →0

n→∞

== Σi=1 n1*∆Xi = b-a

2)пусть пси –иррациональн,? [xi-1; xi], ɓt (знак сигма по t) ɓt (T; {псиi})= Σi=1 n0*∆Xi =0

Если перейти к пределу,то мы не получаем одно число, тк не существует общего предела иррац. функции.

15 Классы интегрируемых функций (достаточные условия интегрируемости). Функция называется Ку сочно- непре рывной на отрезке [а;в], если она непрерывна в любой точке отрезка, кроме точек разрыва первого рода.

1) Непрерывна на замкнутом отрезке [а;в] функция- интегрируема на [а;в].

2) Ф-я кусочно-непрерывная – интегрируема на [а;в]

3) Если ф-я монотонная на [а;в], то он интегрируема на [а;в]

16Производная от интеграла с переменным верхним пределом. Замечание о существование первообразной для непрерывной функции.

Определение:Пу сть f(x) интегрируема на[а;в] тогда, для любого х f(x) интегрируема на [а;в]. Теорема. Пусть f(t) непрерывна на [а;в] F(x)= ∫ax f(t)dt, тогда F(x) дифференцируема на [а;в]. Производная от F(x) = (∫ax f(t)dt)ꞌ=f(x) от интеграла с переменным верхним пределом равна подынтегральной функции и вычисленной в точке равной верхнему пределу. F(x) = ∫ax f(t)dt превообразная для f(x)

Док-во: x+∆x? [а;в]; F(x+∆x)=∫a x+x f(t)dt

∆F(x)= F(x+∆x)-F(x)= ∫a x+x f(t)dt -∫a x f(t)dt =∫a x f(t)dt +∫a x+x f(t)dt - ∫a x f(t)dt =∫a x+x f(t)dt (по 5 свойству)

Fꞌ(x)= lim (∆Fx/∆x)= lim (∫x x+x f(t)dt /∆x)= lim ((f(c)*∆x)/∆x)=f(x)

x→0 x→0 x→0

 

 

17Связь интеграла с переменным верхним пределом с неопределенным интегралом.

18Теорема Барроу. (Формула Ньютона-Лейбница). Если функция у = f(x) непрерывна на отрезке [а;Ь] и F(x) - какая-либо ее первообразная на [а; Ь] (F'(x) = f(x)), то имеет место формула

ab f(x) dx = F(b) - F(a).

19 Замена переменной в определенном интеграле. Если:

1) функция х = p(t) и ее производная хꞌ=pꞌ(t) непрерывны при t? [α;β];

2) множеством значений функции х = p(t) при t?[α;β] является отрезок [а; Ь];

3) р(α) = а и р(β) = Ь, то ь ∫a b f(x) dx =∫a b f(p(t)). < pꞌ(t) dt

 

20Интегрирование по частям в определенном интеграле

. Если функции u = и(х) и v = v(x) имеют непрерывные производные на отрезке [а; Ь]. то имеет место формула ∫ab udv = uv│a b -∫ab vdu.

21Геометрические приложения определенного интеграла. Вычисление площадей в декартовой системе координат величина Чтобы найти значение геометр. А, связан [a; в] изменения независимой переменной х, А- вел. аддитивная

A=f(c1)x1+…+f(cn)∆xn= Σi=1 nf(ci)∆Xi

A= lim Σi=1 n f(ci)∆Xi = ∫a b f(x) dx

λ →0

n→∞

S=a b f(x) dx площадь фигуры ограниченная кривыми y=f1(x) и y=f2(x) прямыми x=a x=b при условии f2(x)≥f1(x)

S= ∫a b f2(x) dx- ∫a b f1(x) dx= = ∫a b (f2(x) - f1(x))dx

22Несобственные интегралы I рода. Определения и примеры. Рассмотрим так называемые несобсmвенные интегралы, т. е определенный интеграл от непрерывной функции, но с бесконечным промежутком интегрирования.

+∞

a f(x) dx = lim ∫a b f(x) dx.

b→+∞

23Геометрический смысл несобственного интеграла I рода. Если f(x)≥0 то ∫ab f(x) dx выражает -площадь области, ограниченной кривой y=f(x) и прямыми y=0 x=a x=b поэтому естественно считать, что ∫a b f(x) dx выражает площадь трапеции с бесконечно большим основанием, заключенной м/у линиями у=0,х=0, у=у(х). расходящийся интеграл не имеет какого-либо геометр смысла. Если на промежутке [a;+∞) непрерывные функции f(x) и p(x) удовлетворяют условию 0≤ f≤ p(x) то из сходимости интеграл ∫a f(x) dx из расходимости ∫p(x) dx.

 

24zНесобственные интегралы II рода. Определения и примеры

несобсmвенные интегралы, определенный интеграл с конечным промежутком интегрирования, но от функции, имеющей на нем бесконечный разрыв.

a f(x) dx из расходимости ∫p(x) dx

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: