Взаимодействие программного обеспечения с внешним устройством осуществляется через контроллер




Процессы, происходящие в контроллерах, протекают в периоды между выдачами команд независимо от ОС. От подсистемы ввода-вывода требуется спланировать в реальном масштабе времени (в котором работают внешние устройства) запуск и приостановку большого количества разнообразных драйверов, обеспечив приемлемое время реакции каждого драйвера на независимые события контроллера. С другой стороны, необходимо минимизировать загрузку процессора задачами ввода-вывода, оставив как можно больше процессорного времени на выполнение пользовательских процессов.

Данная задача является классической задачей планирования систем реального времени и обычно решается на основе многоуровневой приоритетной схемы обслуживания по прерываниям. Для обеспечения приемлемого уровня реакции все драйверы (или части драйверов) распределяются по нескольким приоритетным уровням в соответствии с требованиями ко времени реакции и временем исполь­зования процессора. Для реализации приоритетной схемы обычно задействуется общий диспетчер прерываний ОС.

10.3.2 Согласование скоростей обмена и кэширование данных

При обмене данными всегда возникает задача согласования скорости. Например, если один пользовательский процесс вырабатывает некоторые данные и передает их другому пользовательскому процессу через оперативную память, то в общем случае скорости генерации данных и их чтения не совпадают. Согласование скорости обычно достигается за счет буферизации данных в оперативной памяти и синхронизации доступа процессов к буферу.

В подсистеме ввода-вывода для согласования скоростей обмена также широко используется буферизация данных в оперативной памяти. В тех специализированных операционных системах, в которых обеспечение высокой скорости ввода-вывода является первоочередной задачей (управление в реальном времени, услуги сетевой файловой службы и т. п.), большая часть оперативной памяти отводится не под коды прикладных программ, а под буферизацию данных. Однако буферизация только на основе оперативной памяти в подсистеме ввода-вывода оказывается недостаточной — разница между скоростью обмена с оперативной памятью, куда процессы помещают данные для обработки, и скоростью работы внешнего устройства часто становится слишком значительной, чтобы в качестве временного буфера можно было бы использовать оперативную память — ее объема может просто не хватить. Для таких случаев необходимо предусмотреть осо­бые меры, и часто в качестве буфера используется дисковый файл, называемый также спул-файлом (от spool — шпулька, тоже буфер, только для ниток). Типичный пример применения спулинга дает организация вывода данных на принтер. Для печатаемых документов объем в несколько десятков мегабайт — не редкость, поэтому для их временного хранения (а печать каждого документа занимает от нескольких минут до десятков минут) объема оперативной памяти явно недостаточно.

Другим решением этой проблемы является использование большой буферной памяти в контроллерах внешних устройств. Такой подход особенно полезен в тех случаях, когда помещение данных на диск слишком замедляет обмен (или когда данные выводятся на сам диск). Например, в контроллерах графических диспле­ев применяется буферная память, соизмеримая по объему с оперативной, и это существенно ускоряет вывод графики на экран. Буферизация данных позволяет не только согласовать скорости работы процессора и внешнего устройства, но и решить другую задачу — сократить количество реальных операций ввода-вывода за счет кэширования данных. Дисковый кэш является непременным атрибутом подсистем ввода-вывода практически всех операционных систем, значительно сокращая время доступа к хранимым данным.

8.4.3. Разделение устройств и данных между процессами

Устройства ввода-вывода могут предоставляться процессам как в монопольное, так и в совместное (разделяемое) использование. При этом ОС должна обеспечивать контроль доступа теми же способами, что и при доступе процессов к другим ресурсам вычислительной системы — путем проверки прав пользователя или группы пользователей, от имени которых действует процесс, на выполнение той или иной операции над устройством. Например, определенной группе пользователей последовательный порт разрешено захватывать в монопольное владение, а другим пользователям это запрещено.

Операционная система может контролировать доступ не только к устройству в целом, но и к отдельным порциям данных, хранимых или отображаемых этим устройством. Диск является типичным примером устройства, для которого важно контролировать доступ не к устройству в целом, а к отдельным каталогам и файлам. При выводе информации на графический дисплей отдельные окна экрана также представляют собой ресурсы, к которым необходимо обеспечить тот или иной вид доступа для протекающих в системе процессов. При этом для каждой порции данных или части устройства могут быть заданы свои права доступа, не связанные прямо с правами доступа к устройству в целом. Так, в файловой системе обычно для каждого каталога и файла можно задать индивидуальные права доступа. Очевидно, что для организации совместного доступа к частям устройства или частям данных, хранящихся па нем, непременным условием является задание режима совместного использования устройства в целом.

Одно и то же устройство в разные периоды времени может использоваться как в разделяемом, так и в монопольном режимах. Тем не менее существуют устройства, для которых обычно характерен один из этих режимов, например последовательные порты и алфавитно-цифровые терминалы чаще используются в монопольном режиме, а диски — в режиме совместного доступа. Операционная система должна предоставлять эти устройства в обоих режимах, осуществляя отслеживание процедур захвата и освобождения монопольно используемых устройств, а в случае совместного использования оптимизируя последовательность операций ввода-вывода для различных процессов в целях повышения общей производительности, если это возможно. Например, при обмене данными нескольких процессов с диском можно так упорядочить последовательность операций, что непроизводительные затраты времени на перемещение головок существенно уменьшаются (при этом для отдельных процессов возможно некоторое замедление операции ввода-вывода).

При разделении устройства между процессами может возникнуть необходимость в разграничении порции данных двух процессов друг от друга. Обычно такая потребность возникает при совместном использовании так называемых последовательных устройств, данные в которых в отличие от устройств прямого доступа не адресуются. Типичным представителем такого рода устройства является принтер, который не выделяется в монопольное владение процессам, и в то же время каждый документ должен быть напечатан в виде последовательного набора страниц. Для подобных устройств организуется очередь заданий на вывод, при этом каждое задание представляет собой порцию данных, которую нельзя разрывать, например документ для печати. Для хранения очереди заданий используется спул-файл, который одновременно согласует скорости работы принтера и оперативной памяти и позволяет организовать разбиение данных на логические порции. Так как спул-файл находится на разделяемом устройстве прямого доступа, то процессы могут одновременно выполнять вывод на принтер, помещая данные в свой раздел спул-файла.

10.3.4 Обеспечение удобного логического интерфейса между устройствами и остальной частью системы

Разнообразие устройств ввода-вывода делает особенно актуальной функцию ОС по созданию экранирующего логического интерфейса между периферийными устройствами и приложениями. Практически все современные операционные системы поддерживают в качестве основы такого интерфейса файловую модель периферийных устройств, когда любое устройство выглядит для прикладного программиста последовательным набором байт, с которым можно работать с помощью унифицированных системных вызовов (например, read и write), задавая имя файла-устройства и смещение от начала последовательности байт. Для поддержания такого интерфейса подсистема ввода-вывода должна проделать немалую работу, учитывая разницу в организации операций обмена данными, например, с жестким диском и графическим терминалом.

Привлекательность модели файла-устройства состоит в ее простоте и унифицированности для устройств любого типа, однако во многих случаях для программирования операций ввода-вывода некоторого устройства она является слишком бедной. Поэтому данная модель часто используется только в качестве базиса, над которым подсистема ввода-вывода строит более содержательную модель устройств конкретного типа. Подсистема ввода-вывода предоставляет, как правило, спе­цифический интерфейс для вывода графической информации на дисплей или принтер, для программирования операций сетевого обмена и т. п. При этом разработчик специфического интерфейса всегда может опираться на имеющийся базовый интерфейс.

 

23. 23. Прямой доступ к памяти — режим обмена данными между устройствами или же между устройством и основной памятью (RAM) без участия Центрального Процессора (ЦП). В результате скорость передачи увеличивается, так как данные не пересылаются в ЦП и обратно. Таким образом процессор освобождается от этих простых задач и может больше времени уделить сложным задачам, для которых он и предназначен.

Чтобы контролировать операции прямого доступа к памяти, DMA-контроллер сначала нужно запрограммировать информацией о следующей операции. Эта информация включает в себя такие вещи как: адреса источника и приемника, режим работы и объем передаваемых данных.
Системная магистраль - это среда передачи сигналов управления, адресов, данных, к которой параллельно и одновременно может подключаться несколько компонентов вычислительной системы. Физически системная магистраль представляет собой параллельные проводники на материнской плате, которые называются линиями- интерфейс системной магистрали или стандарт обмена.
Для IBM PC XT был разработан стандарт ISA (IndustryStandartArchitecture), который имеет две модификации - для XT и для АТ. В ISA XT шина данных - 8 бит, шина адресов - 20 бит, шина управления - 8 линий. В ISA АТ шина данных увеличена до 16 бит. Встречаются и 32-битовые ISA, но это - нестандартизированное расширение. Тактовая частота для работы СМ в стандарте ISA составляет 8 МГц. Производительность ISA XT - 4 Мбайт/с, ISA АТ - от 8 до 16 Мбайт/с.
Стандарт EISA (Extended ISA) - это жестко стандартизованное расширение ISA до 32 бит. Конструктивно совместима с ISA-адаптерами внешних устройств. Предназначена для многозадачных систем, файл-серверов и систем, в которых требуется высокоэффективное расширение ввода-вывода. При тактовой частоте 8.33 МГц скорость передачи данных составляла 33 Мбайт/с.
Стандарт VESA (VESA LokalBas или VLB) разработан Ассоциацией стандартов видеоданных (VideoElectronicsStandartAssociation) как расширение стандарта ISA для обмена видеоданными с адаптером SVGA. Обмен данными по этому стандарту ведется под управлением микросхем, расположенных на карте, устанавливаемой в специальный слот (разъем) расширения VLB и соединяемой с СМ через стандартный слот расширения. В отличие от стандартных слотов расширения слот VLB связан с микропроцессором напрямую, минуя системную магистраль. Карта VLB, работая совместно с системной магистралью, реализующей стандарт ISA, обеспечивает 32-разрядную передачу данных с тактовой частотой микропроцессора (но не более 40 - 50 МГц). В стандартные слоты материнской платы с интерфейсом VLB устанавливаются карты расширения с интерфейсом ISA. Производительность стандарта VLB достигает 132 Мбайт/с.
Стандарт PCI (PeripheralComponentmterconnect) разработан фирмой Intel для ЭВМ с МП Pentium. Это не развитие предыдущих стандартов, а совершенно новая разработка. Системная магистраль в соответствии с этим стандартом работает синхронно с тактом МП и осуществляет связь между локальной шиной МП и интерфейсом ISA, EISA или МСА. Но поскольку для этого интерфейса используются микросхемы, выпускаемые другими фирмами (Satum - для 486, Mercury, Neptune, Triton - для Pentium), скорость работы СМ реально'составляет 30 - 40 Мбайт/с при теоретически возможной 132/ 264 Мбайт/с. Стандарт PCI разрабатывался как процессорно-независимый интерфейс. Помимо Pentium с этим интерфейсом могут работать и МП других фирм (Alpha корпорации DEC, MIPS R4400 и Power PC фирм Motorola, Apple и IBM). Стандарт PCI позволяет реализовать дополнительные функции: автоматическую конфигурацию периферийных устройств (которая позволяет пользователю устанавливать дополнительные платы, не задумываясь над распределением прерываний, каналов ПДП и адресного пространства); работу при пониженном напряжении питания; возможность работы с 64-разрядным интерфейсом. "Слоевая" структура интерфейса PCI снижает электрическую нагрузку на МП и позволяет одновременно управлять шестью периферийными устройствами, подключенными к СМ. Стандарт PCI позволяет использовать "мосты" (Bridges) для организации связи с другими стандартами (например, PCI to ISA Bridge).
Стандарт USB (UniversalSerialBus) - универсальный последовательный интерфейс, обеспечивающий обмен со скоростью 12 Мбайт/с и подключение до 127 устройств.
Стандарт PCMCIA (PersonalComputerMemoryCardInternationalAssociation) - интерфейс блокнотных ПЭВМ для подключения расширителей памяти, модемов, контроллеров дисков и стриммеров, сетевых адаптеров и др. Системная магистраль, выполненная по этому стандарту, имеет минимальное энергопотребление, ШД - на 16 линий, ША - на 24 линии.

 

24 23. Прямой доступ к памяти — режим обмена данными между устройствами или же между устройством и основной памятью (RAM) без участия Центрального Процессора (ЦП). В результате скорость передачи увеличивается, так как данные не пересылаются в ЦП и обратно. Таким образом процессор освобождается от этих простых задач и может больше времени уделить сложным задачам, для которых он и предназначен.

Чтобы контролировать операции прямого доступа к памяти, DMA-контроллер сначала нужно запрограммировать информацией о следующей операции. Эта информация включает в себя такие вещи как: адреса источника и приемника, режим работы и объем передаваемых данных.
Системная магистраль - это среда передачи сигналов управления, адресов, данных, к которой параллельно и одновременно может подключаться несколько компонентов вычислительной системы. Физически системная магистраль представляет собой параллельные проводники на материнской плате, которые называются линиями- интерфейс системной магистрали или стандарт обмена.
Для IBM PC XT был разработан стандарт ISA (IndustryStandartArchitecture), который имеет две модификации - для XT и для АТ. В ISA XT шина данных - 8 бит, шина адресов - 20 бит, шина управления - 8 линий. В ISA АТ шина данных увеличена до 16 бит. Встречаются и 32-битовые ISA, но это - нестандартизированное расширение. Тактовая частота для работы СМ в стандарте ISA составляет 8 МГц. Производительность ISA XT - 4 Мбайт/с, ISA АТ - от 8 до 16 Мбайт/с.
Стандарт EISA (Extended ISA) - это жестко стандартизованное расширение ISA до 32 бит. Конструктивно совместима с ISA-адаптерами внешних устройств. Предназначена для многозадачных систем, файл-серверов и систем, в которых требуется высокоэффективное расширение ввода-вывода. При тактовой частоте 8.33 МГц скорость передачи данных составляла 33 Мбайт/с.
Стандарт VESA (VESA LokalBas или VLB) разработан Ассоциацией стандартов видеоданных (VideoElectronicsStandartAssociation) как расширение стандарта ISA для обмена видеоданными с адаптером SVGA. Обмен данными по этому стандарту ведется под управлением микросхем, расположенных на карте, устанавливаемой в специальный слот (разъем) расширения VLB и соединяемой с СМ через стандартный слот расширения. В отличие от стандартных слотов расширения слот VLB связан с микропроцессором напрямую, минуя системную магистраль. Карта VLB, работая совместно с системной магистралью, реализующей стандарт ISA, обеспечивает 32-разрядную передачу данных с тактовой частотой микропроцессора (но не более 40 - 50 МГц). В стандартные слоты материнской платы с интерфейсом VLB устанавливаются карты расширения с интерфейсом ISA. Производительность стандарта VLB достигает 132 Мбайт/с.
Стандарт PCI (PeripheralComponentmterconnect) разработан фирмой Intel для ЭВМ с МП Pentium. Это не развитие предыдущих стандартов, а совершенно новая разработка. Системная магистраль в соответствии с этим стандартом работает синхронно с тактом МП и осуществляет связь между локальной шиной МП и интерфейсом ISA, EISA или МСА. Но поскольку для этого интерфейса используются микросхемы, выпускаемые другими фирмами (Satum - для 486, Mercury, Neptune, Triton - для Pentium), скорость работы СМ реально'составляет 30 - 40 Мбайт/с при теоретически возможной 132/ 264 Мбайт/с. Стандарт PCI разрабатывался как процессорно-независимый интерфейс. Помимо Pentium с этим интерфейсом могут работать и МП других фирм (Alpha корпорации DEC, MIPS R4400 и Power PC фирм Motorola, Apple и IBM). Стандарт PCI позволяет реализовать дополнительные функции: автоматическую конфигурацию периферийных устройств (которая позволяет пользователю устанавливать дополнительные платы, не задумываясь над распределением прерываний, каналов ПДП и адресного пространства); работу при пониженном напряжении питания; возможность работы с 64-разрядным интерфейсом. "Слоевая" структура интерфейса PCI снижает электрическую нагрузку на МП и позволяет одновременно управлять шестью периферийными устройствами, подключенными к СМ. Стандарт PCI позволяет использовать "мосты" (Bridges) для организации связи с другими стандартами (например, PCI to ISA Bridge).
Стандарт USB (UniversalSerialBus) - универсальный последовательный интерфейс, обеспечивающий обмен со скоростью 12 Мбайт/с и подключение до 127 устройств.
Стандарт PCMCIA (PersonalComputerMemoryCardInternationalAssociation) - интерфейс блокнотных ПЭВМ для подключения расширителей памяти, модемов, контроллеров дисков и стриммеров, сетевых адаптеров и др. Системная магистраль, выполненная по этому стандарту, имеет минимальное энергопотребление, ШД - на 16 линий, ША - на 24 линии.

 

25. 25. Внешние запоминающие устройства.

Помимо оперативной памяти, компьютеру необходима дополнительная память для долговременного размещения данных. Такие устройства называются ВЗУ (внешние запоминающие устройства). К ним относятся накопители на магнитной ленте, накопители на дискетах, винчестеры, CD-ROM, магнитооптические диски. Накопители на гибких дисках (FloppyDiskDrive), являются старейшими периферийными устройствами PC. В качестве носителя информации в них применяются дискеты диаметрами 3, 5” 5, 25”и 8” (на сегодняшний день дискеты 5, 25” практически не используются 8” не используются). Конструкция дискет одинакова для всех форматов. В футляре находится пластмассовый диск с нанесенным на него магнитным слоем для записи информации. Объем записываемой информации зависит от плотности записи. Существуют стандарты SS/SD, DS/DD, DS/HD для 5/25” объем записываемой информации от 180 Кб до 1. 2 Мб. DD, HD и ED для 3, 5” дискет, объем записываемой информации от 720 Кб до 2, 88 Мб. Самые распространенные - дискеты 3, 5” HD. Как носители информации дискеты почти изжили себя, малый объем, небольшая скорость чтения/записи, ненадежность делают их применение невыгодным.

Накопители на жестких дисках (HardDiskDrive) так называемые –винчестеры. По сравнению с дискетами имеют несколько преимуществ: объем записываемой информации многократно превосходит возможности гибких дисков. Скорость чтения/записи также намного больше, высокая надежность. HDD существуют в виде внутренних и внешних (переносных) устройств. Физические размеры винчестеров стандартизированы параметром, называемым форм-фактор. HDD с форм-фактором 3, 5” имеют стандартные размеры корпуса 41. 6х101х146 мм. Также они имеют несколько стандартных значений высоты 2, 6”, 1”, 3/4”, 0, 5”. Чаще всего в компьютерах используются винчестеры 3, 5”, 1” в высоту (Slimline). Существуют несколько типов винчестеров: MFM, RLL, ESDI, IDE и SCSI.

MFM, RLL, ESDI-винчестеры сегодня уже не устанавливаются в PC. Они использовались на машинах типа ХТ и 286АТ. ESDI принадлежали к первым HDD достигшим емкости 100 Мб, и использовались на сетевых серверах и высокоскоростных устройствах.

IDE (IntegratedDriveElectronics) главное отличие от предыдущих типов выражается в том, что управляющая электроника расположена не в контроллере, а на винчестере. Это преимущество проявляется при приеме и передачи информации, в таких устройствах оптимально согласованы прием и передача сигналов. IDE HDD обрабатывают данные совместно с шиной ввода/вывода, поэтому частота тактового сигнала шины должна соответствовать быстродействию HDD.

SCSI-винчестеры имеют самую высокую скорость обмена данными. Их основные характеристики сопоставимы с IDE-винчестерами, они различаются тем, что SCSI-винчестеры могут хранить большие объемы информации за счет высокой скорости обмена данными, в то время как объем IDE-винчестеров ограничен их производительностью.

Емкость винчестера –его основная характеристика. Сегодня объем данных, которые можно записать должен быть не менее 4-5 Гб, но требования программного обеспечения постоянно растут, поэтому жесткий диск придется менять раз в 1-2 года в зависимости от то того насколько интенсивно и с какими целями используется компьютер. Еще одой характеристикой является время доступа необходимое HDD для поиска любой информации на диске. Среднее время доступа, на сегодняшний день, для лучших IDE и SCSI дисков - это значение меньше 10 мс. Среднее время поиска–время в течение которого магнитные головки перемещаются от одного цилиндра к другому. Главным образом зависит от механизма привода головок, а не от интерфейса. Скорость передачи данных, зависит от количества байт в секторе, количестве секторов на дорожке и от скорости вращения дисков (3000-3600 об. /мин. Самые современные HDD– 7200 об. /мин.).

Время безотказной работы. Производители дают гарантию надежности устройства, которая обычно составляет 20000-500000 часов. Наработка винчестера за год составит 8760 часов, что делает этот параметр не важным, так как винчестер морально устареет раньше чем физически.

Кэш-память винчестера –ячейки памяти, размещенные на контроллере винчестера, существенно влияет на скорость работы винчестера, работает по принципу кэш памяти 2-го уровня. Типичная величина может варьироваться от 64 Кб.до 1024 Кб. Съемные/внешние/переносные жесткие диски. По характеристикам не отличаются от обычных. Альтернативой им служат накопители со сменными дисками, в отличии от съемных винчестеров подвижным является лишь непосредственно носитель информации, функционально напоминают накопители на жестких дисках, но существенно превосходят их по характеристикам. Объем записываемой информации варьируется от 100 Мб, до 1 Гб, среднее время доступа 10-30 мс, средняя скорость обмена 4-6 Мб/сек. Не существует производственных стандартов на данный вид ВЗУ, но наиболее распространены накопители серии Jaz и Zip фирмы iOmega. Приводы CD-ROM. Компакт диски, использовавшиеся для аудиоаппаратуры, были модифицированы для применения в РС и в настоящее время стали неотъемлемой частью современных компьютеров. Является отличным носителем информации, более компактным, удобным и дешевым чем винчестер. Не может использоваться как HDD так как стоимость записи и ее скорость намного выше. Выполняется как внутренне устройство, и имеет размер дисковода 5, 25”. Обычно управляются через IDE, SCSI интерфейс или звуковую карту. Диск изготовлен из поликарбоната, который покрыт с одной стороны отражающим слоем (из алюминия или золота). Запись производится с помощью лазерного луча выжигающего чередования углублений в поверхности металлического слоя. Основной характеристикой является скорость передачи данных. За единицу считывания, принята скорость считывания с магнитной ленты. Скорость считывания последующих устройств кратна этой и варьируется от 150 Кб. /сек. До 6-7 Мб. /сек. Качество считывания характеризуется коэффициентом ошибок и представляет собой оценку вероятности искажения информационного бита при его считывании. Данный параметр отражает способность устройства корректировать ошибки чтения/записи. Среднее время доступа–время, которое требуется приводу для нахождения на носителе нужных данных. Варьируется от 400 до 80 мс. Объем буферной памяти позволяет передавать данные с постоянной скоростью. Различают три типа буферов: статический, динамический и с опережающим чтением. Средняя наработка на отказ составляет 50-125 тысяч часов, что намного опережает сроки морального устаревания устройства. Накопители CD-RW позволяют производить запись на компакт диск, диск при этом покрыт слоем термочувствительной краски, с такими же отражающими свойствами, как и у алюминиевого покрытия. Является последним достижением в области разработок записываемых компакт дисков.

DVD (DigitalVideoDisk) –диски, которые сменят CD-ROM, первоначально разрабатывались для домашнего видео. Отличаются тем, что могут хранить объем данных многократно превышающий возможности компакт дисков (от 4, 7 до 17 Гб.). Уровень качества звука и изображения хранимого на DVD приближен к студийному качеству. В накопителях DVD используется более узкий луч лазера чем в CD-ROM, поэтому толщина защитного слоя диска была снижена в 2 раза, что привело к появлению двухслойных дисков. Магнитооптические накопители (Magneto-Optical) представляют собой накопитель информации, в основу которого положен магнитный носитель с оптическим управлением. Поверхность магнитооптического диска покрыта сплавом, свойства которого меняются как под воздействием тепла, так и под воздействием магнитного поля. Если нагреть диск сверх некоторой температуры, то становится возможным изменение магнитной поляризации посредством небольшого магнитного поля, На этом свойстве основаны технологии чтения записи магнитооптических дисков. МО диски могут быть односторонними 3, 5” емкости 128, 230, и 640 Мб. Двухсторонними 5, 25” емкостью 600 Мб. –2, 6 Гб. 2, 5” диски MiniDiskData фирмы Sony, созданы специально для аудиоустройств, имеют емкость 140 Мб. 12” диски для однократной записи емкостью 3, 5– 7 Гб. Большое распространение получили при построении оптических библиотек. Накопители на магнитной ленте (стримеры) В качестве носителя информации в них применяется магнитная лента. Они могут быть в виде внешнего и внутреннего устройства. Стримеры в основном используются для архивирования и резервного копирования больших объемов данных на компактном носителе. К их недостаткам относится малая скорость передачи данных, значительно ниже, чем у винчестеров и сменных жестких дисков. Поэтому стримеры можно рекомендовать только для резервного копирования больших объемов информации. Существуют стандарты: QIC, TRAVAN, DDS, DAT и DLT.

QIC (QuarterInchCartridge) отличается низким быстродействием, так как подключается к интерфейсу накопителей на гибких дисках. Существуют кассеты объемом от 40 Мб до 13 Гб. TRAVAN разработан на основе QIC, в зависимости от объема информации, на которую рассчитана кассета (400-4000 Мб) использует контроллер накопителя на магнитных дисках или SCSI-2 (для кассет объемом 4000 Мб). DSS (DigitalDataStorage) и DAT (DigitalAudioTape) стандарты разработаны фирмой Sony и используются для цифровой аудио и видео записи. DLT–самый современный стандарт, появился в середине 90-х годов. Накопители, использующие эту технологию, могут хранить 20-40 Гб данных. Суммарная емкость ленточных библиотек построенных на основе DLT-кассет может достигать 5 Тб. Редким и дорогим ВЗУ является массовая память. Набор микросхем памяти большого объема поставляемых на одной плате, эмулирующих работу жесткого диска.

В заключении можно сказать, что накопители на жестких магнитных дисках еще долго останутся основными ВЗУ, так как стоимость записи на них намного ниже чем у оптических дисков, которые могут составить конкуренцию по объему записываемой информации. Различные способы хранения и записи информации служат для разных целей, на сегодняшний день не существует универсального ВЗУ, которое может быть использовано как постоянное и переносное одновременно и при этом быть доступным рядовым пользователям. Еще долго нам предстоит слушать скрипение жесткого диска и разгребать стол заваленный компакт дисками, хотя никто не знает что еще может изобрести человек.

 

26. 26

Связь двух ЭВМ и внешнего устройства или двух ЭВМ друг с другом может быть организована в трех режимах: симплексном, полудуплексном и дуплексном.
В симплексном режиме передача данных может вестись только в одном направлении: один передает, другой принимает.
Полудуплексный режим позволяет выполнять поочередный обмен данными в обоих направлениях. В каждый момент времени передача может вестись только в одном направлении: один передает, другой принимает. И пока передача не закончилась, принимающий ничего не может сообщить передающему. Заканчивая передачу, передающая ЭВМ пересылает приемной специальный сигнал "перехожу на прием" (или просто "прием" - как выглядит этот сигнал, должны "договориться" между собой коммуникационные программы.Этот сигнал должен быть им обоим известен, т.е. сигнал окончания связи должен выглядеть одинаково у обеих ЭВМ, находящихся на связи). Затем они могут поменяться ролями. Этот режим является самым простым. Если во время передачи в приемной ЭВМ возникла нештатная ситуация (появилась ошибка в передаваемых данных, коммуникационная программа не успела обработать принятый байт до поступления следующего, при распечатке принимаемых данных одновременно с приемом замяло бумагу в принтере и др.), то принимающая ЭВМ неспособна сообщить об этом передающей до появления сигнала окончания передачи. Вся информация, передаваемая после появления нештатной ситуации, теряется. После устранения неполадок передачу приходится повторять. Поэтому при обмене большими объемами информации приходится все передаваемые данные делить на блоки и контролировать прохождение каждого блока. Общее время обмена информацией при этом возрастает.
Дуплексный режим позволяет вести передачу и прием одновременно в двух встречных направлениях.
В симплексном режиме может быть осуществлена связь, например, между ЭВМ и принтером, клавиатурой и ЭВМ или ЭВМ и дисплеем, а также между двумя ЭВМ, находящимися всегда в односторонней связи.
Сопряжение ЭВМ с каналом связи осуществляется с помощью последовательного (RS-232) или параллельного (Centronics) интерфейса, каждый из которых может обеспечить работу сопрягаемых устройств в любом из рассмотренных режимов - все зависит от типа используемого канала связи и технологии его использования.


Программно-аппаратурный протокол RTS/CTS используется для синхронного обмена информацией (все ранее рассмотренные протоколы реализовали асинхронный обмен) между ЭВМ и ее внешним устройством.

Четыре управляющих сигнала: DTR, DSR, RTS, CTS вырабатываются ЭВМ и внешним устройством. Анализ поступивших сигналов производится коммуникационной программой. Передаваемые данные в синхронном режиме могут сопровождаться управляющим сигналом от передающего или приемного устройства (TXD - TransmittedData и RXD - ReceivedData соответственно)
В симплексном режиме передача данных может вестись только в одном направлении: один передает, другой принимает.

Полудуплексный режим позволяет выполнять поочередный обмен данными в обоих направлениях.
Дуплексный режим позволяет вести передачу и прием одновременно в двух встречных направлениях.
В симплексном режиме может быть осуществлена связь, например, между ЭВМ и принтером, клавиатурой и ЭВМ или ЭВМ и дисплеем, а также между двумя ЭВМ, находящимися всегда в односторонней связи.
Для организации симплексного режима необходимо, чтобы передатчик одной ЭВМ был связан с приемником другой ЭВМ двухпроводной линией связи.

 

27. 27.

Видеосистемы предназначены для оперативного отображения информации, доведения ее до сведения оператора ЭВМ. Обычно они состоят из двух частей: монитора и адаптера. Монитор служит для визуализации изображения, адаптер — для связи монитора с микропроцессорным комплектом.

Классификацию мониторов можно провести по следующим признакам:

по используемым физическим эффектам, по принципу формирования изображения на экране, по способу управления, по длительности хранения информации на экране, по цветности изображения и по его эргономическим характеристикам.

По принципу формирования изображения мониторы делятся на плазменные, электролюминесцентные, жидкокристаллические и электронно-лучевые.

Плазменные, электролюминесцентные и жидкокристаллические мониторы относятся к дисплеям с плоским экраном. Для них характерно: экран имеет малые физические размеры, не мерцает, полностью отсутствует рентгеновское излучение. Мониторы этого вида допускают локальное стирание и замену информации, имеют малый вес и незначительное потребление энергии, большую механическую прочность и длительный срок службы. Плоские экраны уступают мониторам на электронно-лучевых трубках в скорости обновления информации на экране (они медленнодействующие, не приспособлены для демонстрации динамично меняющихся изображений) и в количестве отображаемых цветовых оттенков.

Плазменные и электролюминесцентные мониторы являются активными, излучающими свет. Для работы с ними не нужен посторонний источник света.

Жидкокристаллические - пассивные мониторы. Они работают только при наличии постороннего источника света и способны работать либо в отраженном, либо в проходящем свете. Жидкокристаллические мониторы используют способность жидких кристаллов изменять свою оптическую плотность или отражающую способность под воздействием электрических сигналов.

В плазменной панели элемент изображения образуется в результате газового разряда, который сопровождается излучением света. Конструктивно панель состоит из трех стеклянных пластин, на две из которых нанесены тонкие прозрачные проводники (до 2-4 проводников на 1 мм). На одной пластине проводники расположены горизонтально, на другой - вертикально. Между ними находится третья стеклянная пластина, в которой в местах пересечения проводников имеются сквозные отверстия. Эти отверстия при сборке панели заполняются инертным газом. Вертикально и горизонтально расположенные Проводники образуют координатную сетку; на пересечении проводников находятся элементы изображения - пикселы (от “pictureelement”). При разрешающей способности 512х512 пиксел такая панель имеет размеры не более 200х200мм и толщину 6-8 мм. В настоящее время созданы цветные плазменные панели с разрешающей способностью экрана 1024х1024 пиксел.

Электролюминесцентные мониторы работают на принципе люминесценции вещества при воздействии на него электрического поля. Люминесцентное вещество распыляется на внутренней поверхности одной из пластин с координатной сеткой. Напряжение на координатные шины подается такое, чтобы на пересечении координатных шин создавалось электрическое поле, достаточное для возбуждения люминофора.

Наибольшее распространение получили мониторы на электронно-лучевых трубках. Электронно-лучевая трубка (ЭЛТ) представляет собой электровакуумный прибор в виде стеклянной колбы, дно которой является экраном. В колбе, из которой удален воздух, расположены электроды: электронная пушка (катод с электронагревательным элементом), анод, вертикально и горизонтально отклоняющие пластины и сетка. Снаружи на ЭЛТ установлена фокусирующая система. Внутренняя поверхность экрана покрыта люминофором, который светится при попадании на него потока электронов. Катод, поверхность которого покрыта веществом, легко отдающим электроны при нагревании, является источником электронов. Возле него образуется “электронное облако”, которое под действием электрического поля анода движется в сторону экрана. По мере приближения к аноду электронный поток увеличивает скорость. Фокусирующая система сжимает поток электронов в тонкий пучок, который с помощью отклоняющих пластин направляется в нужную точку экрана. Сетка служит для регулирования плотности электронного потока. Она расположена гораздо ближе к катоду, чем анод. В зоне ее действия поток электронов имеет небольшую скорость, поэто



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: