ВЕКТОРНАЯ ВЕЛИЧИНА В ФИЗИКЕ




ИНДИВИДУАЛЬНЫЙ ПРОЕКТ

по дисциплине

 

Тема:Векторы в математике и физике

Выполнил:

студент 1 курса 18П группы

Профессия:

менеджер по отделам продаж

Карданов Ренат Муратович

Руководитель:Шкрябко Г.В.

преподователь математических и естественнонаучных

 

 

Армавир

 

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ГЛАВА 1. ИСТОРИЯ ВОЗНИКНОВЕНИЯ ВЕКТОРА

1.1 Что такое вектор

1.2 векторы в математике

1.3 векторы в физике

ГЛАВА 2.ПРИМИНЕНИЕ ВЕКТОРОВ ПРИ РЕШЕНИИ ЗАДАЧ

2.1 Приминение векторов в математике и физике

2.2 приминение векторов в других науках

Заключение

список использованных источников

 

 

Одним из фундаментальных понятий современной математики являются вектор и его обобщение – тензор. Эволюция понятия вектора осуществлялась благодаря широкому использованию этого понятия в различных областях математики, механики, а так же в технике.

Вектор относительно новое математическое понятие. Сам термин «вектор» впервые появился в 1845 году у ирландского математика и астронома Уильяма Гамильтона (1805 – 1865) в работах по построению числовых систем, обобщающих комплексные числа. Гамильтону принадлежат и термин «скаляр», «скалярное произведение», «векторное произведение». Почти одновременно с ним исследования в том же направлении, но с другой точки зрения вёл немецкий математик Герман Грассман (1809 – 1877). Англичанин Уильям Клиффорд (1845 – 1879) сумел объединить два подхода в рамках общей теории, включающий в себя и обычное векторное исчисление. А окончательный вид оно приняло в трудах американского физика и математика Джозайи Уилларда Гиббса (1839 – 1903), который в 1901 году опубликовал обширный учебник по векторному анализу.

Конец прошлого и начало текущего столетия ознаменовались широким развитием векторного исчисления и его приложений. Были созданы векторная алгебра и векторный анализ, общая теория векторного пространства. Эти теории были использованы при построении специальной и общей теории относительности, которые играют исключительно важную роль в современной физике.

Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением. Например, некоторые физические величины, такие, как сила, скорость, ускорение и др., характеризуются не только числовым значением, но и направлением. В связи с этим указанные физические величины удобно изображать направленными отрезками. В соответствии с требованиями новой программы по математике и физике понятие вектора стало одним из ведущих понятий школьного курса математикиОдним из фундаментальных понятий современной математики являются вектор и его обобщение – тензор. Эволюция понятия вектора осуществлялась благодаря широкому использованию этого понятия в различных областях математики, механики, а так же в технике.

 

БИОГРАФИЯ

 

Гамильтон был четвёртым из девяти детей, в семье Сары Хаттн (англ. Sarah Hutton 1780—1817) и Арчибальда Гамильтона (англ. Archibald Hamilton 1778—1819), которые жили в Дублине по адресу Dominick Street 38. Арчибальд, родом из городка Данбойн, работал в Дублине юристом. Из-за финансовых затруднений мальчика с трёх лет воспитывал дядя по отцу, Джеймс Гамильтон, викарий и учитель в городе Трим.[1]

 

Уже в детстве мальчик проявил необыкновенные дарования. В 7 лет он знал древнееврейский язык; в 12 — под руководством дяди Джеймса, хорошего лингвиста, знал уже 12 языков и среди них персидский, арабский и санскрит. В 13 лет он написал руководство по сирийской грамматике.

 

После языков настала пора увлечения математикой. Двумя годами раньше Гамильтону попался латинский перевод «Начал» Евклида, и он детально изучил это сочинение; в 13 лет он прочел «Универсальную арифметику» Ньютона; в 16 лет — большую часть «Математических начал натуральной философии» Ньютона, в 17 лет — начал изучение «Небесной механики» Лапласа.

 

1823: поступил в Тринити-колледж в Дублине. Он показал столь блестящие способности, что в 1827 году, ещё студентом, был назначен профессором астрономии в Дублинском университете и королевским астрономом Ирландии, пост Королевского астронома Ирландии занимал на протяжении 38 лет — дольше, чем все остальные, назначавшиеся на эту должность. Публикует ряд работ по геометрической оптике.

 

1833: женится на Хелен Бэйли. Брак оказался не слишком удачным, и Гамильтон начал злоупотреблять алкоголем.[1]

 

1834—1835: классические работы по гамильтоновой механике.

 

1835: вице-король Ирландии возвёл Гамильтона в достоинство баронета.

 

1837: избран президентом Королевской ирландской академии и членом-корреспондентом Петербургской академии наук.

 

1843: открывает кватернионы и углубляется в их исследование.

 

В конце жизни Гамильтон заболел душевным расстройством.

 

Научный вклад

Его сочинения носят печать гениальности, и можно сказать, что он далеко опередил своих современников.

 

Первая из его замечательных работ, озаглавленная сначала «Caustics», была представлена в 1823 году доктору Бринклею, его предшественнику по кафедре, потом, после больших дополнений и разъяснений, напечатана в 1828 году в «Transactions of the Royal Irish Academy» под заглавием «Theory of Systems of Rays». После в тех же записках появились три дополнения к этой статье, в третьем из которых было теоретически доказано, что двупреломляющие кристаллы с двумя оптическими осями должны обладать коническим лучепреломлением по направлениям осей. Эксперимент в Тринити-колледже подтвердил это предсказание.

 

Содержательный мемуар «On a general method in Dynamics», помещенные в «Philosophical Transactions» в 1834—1835 годах, заключает в себе самые важные открытия по механике и теории интегрирования систем дифференциальных уравнений, развитые потом Якоби. В этой работе Гамильтон привел систему дифференциальных уравнений (второго порядка) движущейся материальной системы к удвоенному числу дифференциальных уравнений первого порядка, представленных в каноническом виде, и открыл новый метод получения решения этих уравнений, заключающийся в том, что нужно найти полный интеграл некоторого дифференциального уравнения с частными производными первого порядка и тогда искомые решения составятся по некоторым общим формулам без каких бы то ни было интегрирований.

 

Этот же мемуар указал возможность получения дифференциальных уравнений движения, исходя из нового принципа, названного принципом Гамильтона (см. Гамильтонова механика), являющегося развитием принципа наименьшего действия, установленного ранее Мопертюи, Эйлером и Лагранжем. Созданная им гамильтонова динамика оказалась в XX веке фундаментом теории микромира.

 

Гамильтону же принадлежит введение в механику особого наглядного приема изображения изменений величин и направлений скорости точки, совершающей какое-либо прямо— или криволинейное движение (см. Годограф).

 

1837: аксиоматическая теория комплексных чисел как пар вещественных.

 

В 1840-е годы английская школа математиков упорно пыталась найти расширение поля комплексных чисел с несколькими мнимыми единицами. Только много позже было доказано, что такое расширение не может быть полем — оно либо некоммутативно, либо неассоциативно, либо содержит делители нуля. Первым добился успеха Гамильтон — открыл кватернионы, некоммутативную числовую структуру с тремя мнимыми единицами (1843). Следующие 20 лет он посвятил их подробному исследованию и приложениям.

 

В ходе исследований Гамильтон попутно ввёл понятие векторного поля и создал основы векторного анализа. Он ввел векторное произведение, предложил оператор набла. На основе работ Гамильтона Гиббс и Хевисайд завершили систему векторного анализа.

 

Интересно отметить, что оба главных открытия Гамильтона — новая формулировка механики и кватернионы — сыграли существенную роль в XX веке при возникновении квантовой механики, причем эта роль была не случайна. Во всяком случае, механику Гамильтон сознательно сформулировал в виде классического (коротковолнового) предела волновой теории (аналогично тому, как в его время геометрическая оптика была осознана как коротковолновый предел волновой оптики).

 

 

ВЕКТОР

Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление. Графически вектора изображаются в виде направленных отрезков прямой определенной длины. (рис.1)

Вектор по двум точкам

Вектор началом которого есть точка А, а концом - точка В, обозначается AB (рис.1). Также вектора обозначают одной маленькой буквой, например a.

 

Нулевой вектор

Определение. Нулевым вектором называется вектор, у которого начальная и конечная точка совпадают.

Нулевой вектор обычно обозначается как 0.

 

Длина нулевого вектора равна нулю.

Коллинеарные вектора

Определение. Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 2).

Сонаправленные вектора

Определение. Два коллинеарных вектора a и b называются сонаправленными векторами, если их направления совпадают: a↑↑b (рис. 3).

Компланарные вектора

Определение. Вектора, параллельные одной плоскости или лежащие на одной плоскости называют компланарными векторами. (рис. 5).

 

Равные вектора

Определение. Вектора a и b называются равными, если они лежат на одной или параллельных прямых, их направления совпадают, а длины равны (рис. 6).

Единичный вектор

Определение. Единичным вектором или ортом - называется вектор, длина которого равна единице.

 

ВЕКТОРНАЯ ВЕЛИЧИНА В ФИЗИКЕ

Физические величины служат для численного выражения различных характеристик материальных предметов и физических явлений. Все физические величины разделены на два вида. Векторные величины в физике – это те, которые кроме численного выражения обязательно характеризуются направлением. А вот обычные величины называют скалярными. Примерами таких величин могут служить:

 

температура;

яркость;

энергия;

поглощенная доза радиации;

мощность.

 

Векторные величины в физике, список которых приведен ниже, широко известны:

сила;

ускорение;

 

скорость;

магнитная индукция;

импульс;

напряженность магнитного поля.

Чтобы досконально разобраться в их смысле, попробуем рассмотреть простой пример. Каждый из нас неоднократно бросал или подбрасывал какой-либо предмет. Пусть это будет теннисный мячик. Сделать это можно разными способами:

 

подбросить вертикально вверх;

 

бросить параллельно поверхности земли, то есть горизонтально;

 

метнуть под углом к горизонту.

В нашем эксперименте будем предполагать, что все три раза мячик бросает один и тот же человек, а сила броска всегда примерно одинакова. Какие результаты будут в итоге? Догадаться довольно просто: в каждом из случаев результат будет разным, потому что три раза мячик бросали в разном направлении. Таким образом мы увидели, что векторная величина это в физике одновременно две характеристики какого-либо физического процесса или состояния.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-07-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: