Происхождение Солнечной системы




КУРС ЛЕКЦИЙ ПО ОБЩЕЙ ГЕОЛОГИИ

Вводная лекция

Древние греки, населявшие прекрасную страну Элладу, называли нашу Землю Геей. Уже во втором тысячелетии до нашей эры, в крито-микенский период, широкое развитие получила добыча руд, из которых выплавлялись различные металлы. Вообще-то их начали добывать еще раньше, в конце нового каменного века – неолите. Уже тогда были известны золото, серебро, медь, олово, железо, свинец и другие металлы. Древние металлурги умели делать из них разные сплавы. Умение искать и находить руды чрезвычайно высоко ценилось, как, впрочем, и в последующие времена. Но все же следует признать, что большинство месторождений в глубокой древности было открыто не с помощью целенаправленных поисков, а случайно. Действительно, не надо было обладать знаниями для того, чтобы поднять с поверхности Земли золотой самородок и, обнаружив его, искать вокруг другие самородки. Но постепенно накапливались определенные признаки, сопутствующие разным рудам, о которых писал, например, знаменитый ученый древнего мира Плиний Старший. Зачатки геологических знаний развивались, благодаря существовавшим горным разработкам, прежде всего у египтян, греков, китайцев, индийцев и других народов. Во многих местах найдены остатки древних горных промыслов – в Армении, на Урале, в Забайкалье, на Алтае, в Узбекистане, Таджикистане, Казахстане. Во втором тысячелетии до нашей эры на Урале плавили медь, в Северном Казахстане добывали золото, в горах Средней Азии получали свинец и серебро, а в Азербайджане (в Нахичевани) разрабатывали каменную соль.

Геологические знания постепенно набирали силу, но при рабовладельческом строе трудно было успешно развивать производство, а с ним и горные промыслы. Появление феодализма, установление новых производственных отношений дали толчок развитию и горного дела. В средние века в Центральной и Восточной Европе было много рудников, да и в Киевской Руси, в окрестностях Великого Новгорода добывали железо, строительный камень, а на Белом море – слюду, которая в прошлом веке была названа мусковитом (от слова «моска» Москва). В эпоху Возрождения появились первые зачатки научной геологии. Когда начали формироваться капиталистические отношения в сфере производства, геология сделала резкий шаг вперед. Ученые стали задумываться над тем, откуда взялись высоко в горах древние морские раковины. Наверное, когда-то там плескалось море, а гор не было. Следовательно, суша не была чем-то постоянным, ее очертания менялись. Стали обращать внимание не только на горные породы – известняк, гранит, песчаник, глинистый сланец, мел, но и на то, как они располагаются, залегают в природе. Выяснилось, что слои могут быть наклонными, иногда даже вертикальными. Какая же сила заставила их так наклоняться и изгибаться в складки? Землетрясения и извержения вулканов, приносившие столько бед и несчастий человечеству, тоже стали подвергаться изучению с научной точки зрения.

И вот в XVIII и XIX веках геология как наука сделала поистине героический рывок вперед. Великий Ломоносов заложил своими трудами фундамент геологического учения, на котором в дальнейшем росло здание геологической науки. Можно только удивляться, как много сделал Ломоносов для развития геологических знаний, как впрочем, и для других наук.

Стремительно растущая промышленность требовала все новых и новых полезных ископаемых и во все возрастающем количестве. Для геологии начался «золотой век». Изобретение двигателя внутреннего сгорания дало повод для поисков нефти. Электростанции, заводы, фабрики, требовали угля, сельское хозяйство – удобрений, строительство – камня, песка, глины, воды. Но как же все это дать производству? Где искать новые руды, нефть, газ, алмазы? Как заглянуть поглубже в недра Земли, где подземные клады лежат за семью печатями?

Ответы на все эти и многие другие вопросы дает нам геология – наука о строении Земли, о ее происхождении, возрасте, развитии и образовании полезных ископаемых. «Гео» греч. земля, «логос» – знание. Не следует, конечно, думать, что геологи получают все эти знания только с помощью молотка и лупы, как это многие еще до сих пор представляют. Геология сейчас использует данные физики, химии, биологии, математики, астрономии и сама подразделяется на многочисленные ветви, которые даже просто перечислить затруднительно.

Так, историей нашей планеты занимается историческая геология, которая использует палеонтологию – науку о древнем животном и растительном мире; динамическая геология изучает разнообразные процессы: вулканизм, образование рельефа, возникновение землетрясений, деятельность рек, морей и океанов, образование складок в земных пластах, движение земной коры; стратиграфия занята изучением последовательности образования пластов и установлением их возраста; петрография изучает горные породы, которые состоят из минералов, а петрология – способы образования горных пород; кристаллография рассматривает внутреннюю структуру минералов, их кристаллическую решетку; геохимия изучает распределение химических элементов в земной коре, горных породах, воде и породах других планет (космохимия); гидрогеология исследует подземные воды; геокриологи пытаются проникнуть в тайны вечной мерзлоты, которой у нас в стране заняты огромные пространства; учением о рудных месторождениях занимается геология полезных ископаемых, а нефть и каменный уголь исследуют специалисты по горючим полезным ископаемым; изучение верхних слоев Земли для строительства – это инженерная геология и грунтоведение, а проникновением в глубины Земли с помощью физических методов занимается геофизика, которая сама подразделяется на много дисциплин, в зависимости от используемого метода. Для поисков полезных ископаемых и для научного прогноза нужны разнообразные геологические карты. Их составляют специалисты по геологической съемке и поискам месторождений полезных ископаемых. И каждая из названных отраслей и дисциплин геологических наук еще подразделяется на ряд более узких специализаций, в которых используются новейшие достижения физики, химии, вычислительной математики и техники. Добыча полезных ископаемых развивается так быстро и захватывает такие большие участки Земли, что на повестку дня со всей остротой встал вопрос об охране окружающей среды и земных недр, чем занимается экологическая геология.

Вряд ли стоит еще перечислять то, чем занимается современный геолог, да это практически и невозможно сделать, настолько различны те задачи, методы и приемы, которыми геолог эти задачи решает. Геолог нашего времени – это высокообразованный специалист, владеющий столь различными знаниями и такой новейшей техникой, что сравнивать его с геологом, скажем, начала и даже середины нашего века вряд ли возможно. Объем информации, знаний удваивается сейчас каждые десять лет, а в будущем этот процесс будет еще ускоряться.

Что же мы знаем о нашей планете? Наверное, не так уж мало. Но, как это ни удивительно, в космос человек проник на десятки и сотни миллионов километров, тогда как самая глубокая скважина с огромными трудностями прошла по горным породам чуть больше 12 км. При радиусе Земли около 6371 км это меньше, чем крохотный булавочный укол! И надежд в обозримом будущем проникнуть глубже 20 км с помощью буровой установки, почти нет. Мы знаем, что возраст Земли 4,6 млрд. лет, мы с большой точностью знаем ее размеры, скорость вращения вокруг своей оси, скорость движения по орбите, массу Земли, среднюю плотность вещества планеты. Геологи хорошо изучили все те горные породы, которые находятся на суше площадью 150 млн. км2, но мы только начинает познавать океанское и морское дно, площадь которого (360 млн. км2) более чем в 2 раза превышает площадь суши. И, тем не менее, геологи имеют вполне определенное представление о том, что находится внутри Земли, вплоть до ее центра.

Методы познания глубоких недр планеты Земля, в основном, косвенные и большая их часть основана на решении т.н. обратных задач. Для геолога очень важно не только собирать факты, но и анализировать их, обобщать, для того, что бы установить закономерности развития геологических процессов, эволюции крупных структур земной коры и земного шара в целом. На современном этапе развития геологии все возрастающую роль играет компьютерное моделирование, позволяющее глубоко проникать в сущность многих процессов. Сегодня компьютер в руках геолога, это такой же необходимый инструмент, как и молоток, еще не теряющий своего значения. Учебник по «Общей геологии» посвящен не только динамической геологии, т.е. геологическим процессам, хотя их описание и составляет значительную часть книги. В первой части учебника кратко рассматривается образование Вселенной, галактик и Солнечной системы. Обсуждаются сравнительные данные о планетах, содержатся сведения о форме Земли, ее внутреннем строении, геофизических полях, методах определения относительного и абсолютного (изотопного) возраста горных пород. Дается характеристика основных положений современной геологической теории – тектонике литосферных плит, т.к. она прекрасно объясняет многие геологические процессы. Таким образом, учебник вводит студента в круг основных проблем современной геологической науки, основы которой и необходимо усвоить на первом курсе, чтобы был сформирован тот фундамент, который позволит успешно двигаться вперед.


ЛЕКЦИЯ 1


Наша Земля - одна из девяти планет Солнечной системы, а Солнце это рядовая звезда - желтый карлик, находящаяся в Галактике Млечного Пути, одной из сотен миллионов Галактик в наблюдаемой части Вселенной. Несмотря на то, что непосредственным объектом изучения геологии является планета Земля, нам необходимы знания и о других планетах, звездах, галактиках, т.к. все они находятся в определенном взаимодействии, начиная с момента их появления во Вселенной. Поэтому наша планета представляет собой лишь частицу космического пространства и будет уместно сказать несколько слов о том, каким образом возникла и эволюционировала Вселенная.


Образование Вселенной. и Солнечной системы


Вселенная, которую мы сейчас наблюдаем, содержит лишь 1/9 вещества, из которого, согласно расчетам, должна быть образована масса Вселенной. Следовательно, от нас скрыто 9/9 массы ее вещества. В наблюдаемой форме Вселенная возникла около 18 - 20 млрд. лет назад. До этого времени все ее вещество находилось в условиях бесконечно больших температур и плотностей, которые современная физика не в состоянии описать. Такое состояние вещества называется “сингулярным”. Теорию расширяющейся Вселенной или “Большого Взрыва” (Big Bang, англ.), впервые была создана А.А.Фридманом в России в 1922 г. Талантливый ученый, А.А.Фридман, скончался в 1925 г. в возрасте 37 лет, но выдающаяся теория при его жизни по достоинству оценена не была. С какого-то момента, отстоящего от нас на 20 млрд лет вещество, находящееся в сингулярном состоянии, подверглось внезапному расширению, которые в самых общих чертах можно уподобить взрыву, хотя и весьма своеобразному. Вечно возникающий вопрос “ А что же было до Большого Взрыва”, по мнению известного английского физика С.Хогинса, носит метафизический характер, т.к. это состояние никак впоследствии не отразилось на нынешней Вселенной.

Современная теоретическая физика достоверно описывает процессы “Большого Взрыва”, но только после 1/100 секунды с момента его начала. Так, температура в 1032 К была достигнута через 10-43 сек, 101о К – через 1 сек., 109 К - через 1 минуту, 104 К - через 100 тыс. лет, а 103 К - через 1 миллион лет. Расширяющееся вещество становилось менее плотным и менее горячим. Теорию не только первоначально очень плотной, но и очень горячей Вселенной в конце 40-х годов развивал знаменитый физик Георгий Гамов. Первичный нуклеосинтез стал возможен уже через несколько минут после начала Большого Взрыва, а через 1 млн. лет и формирование атомов (рис. 1.1). С момента начала Большого Взрыва вещество Вселенной непрерывно расширяется и все объекты в ней и галактики и звезды равноудаляются друг от друга. Это расширение “всех от всех” в настоящее время хорошо подтверждается рядом экспериментальных фактов. 1. “Разбегание “ галактик и скоплений галактик. Доказательство этого явления связано с эффектом Допплера, заключающимся в том, что спектральные линии поглощения в наблюдаемых спектрах удаляющегося от нас объекта всегда смещаются в красную сторону, а приближающегося - в голубую1. Во всех случаях наблюдения спектральных линий поглощения от галактик и далеких звезд, смещение происходит в красную сторону, причем, чем дальше отстоит от нас объект наблюдения, тем смещение больше (рис. 1. 2).


Рис. 1.1. Эффект Доплера. При удалении объекта от наблюдателя спектральные линии

смещаются в сторону красного цвета (“красные смещения”)


Все галактики и звезды удаляются от нас и самые далекие из них удаляются с большей скоростью. Это - закон Хаббла - астронома, открытый им в 1929 г.: V=HR, где V - скорость удаления, R - расстояние до космического объекта, а Н - коффициент пропорциональности или постоянная Хаббла, Н = 15 км/сек / 10 6 свет. лет (1 световой год = 9,6·1012 км или 6,3·104 А.Е.). Например, скопление галактик в созвездии Девы (расстояние 78 млн. св.лет) удаляется от нас со скоростью 1200 км/ сек., а галактики в созвездии Гидры (расстояние 3 млрд. 960 млн.св.лет) - со скоростью 61000 км/сек. Следует подчеркнуть, что все галактики разбегаются от всех, а не от нас, как центра наблюдения, а Галактика Млечного Пути, в которой находится Солнечная система - это самая рядовая галактика среди миллионов.


2. “Реликтовое излучение”. В 1964 г. американские астрономы Арно Пензиас и Роберт Вилсон с помощью рупорной антенны фирмы “Белл телефон” в штате Нью Джерси, обнаружили фоновое электромагнитное излучение на длине волны 7,35 см, одинаковое по всем направлениям и не зависящее от времени суток. Это излучение эквивалентно излучению, как говорят физики, абсолютно черного тела с Т. 2,75 К. За это выдающееся открытие ХХ века авторы в 1978 г. были удостоены Нобелевской премии. Еще до обнаружения фонового микроволнового излучения оно было предсказано физиками-теоретиками.

Излучение с такой низкой температурой представляет собой реликт равновесного электромагнитного излучения с очень высокой первоначальной температурой, существовавшего на самых ранних стадиях образования Вселенной, сразу же после начала “Большого Взрыва”. С тех пор эффективная температура от многих миллионов упала до трех градусов Кельвина.

3. Наблюдаемый химический состав Вселенной составляет по массе 3/4 водорода и 1/4 гелия. Все остальные элементы не превышают в составе Вселенной даже 1%. В такой пропорции 3:1 Н и Не образовались в самые первые минуты Большого Взрыва, а, кроме того, и легкие элементы: литий, дейтерий, тритий, но в ничтожном количестве. Тяжелые элементы образовались во Вселенной гораздо позже, когда в результате термоядерных реакций “зажглись” звезды, а при взрывах сверхновых звезд они оказались выброшены в космическое пространство.

Что может ожидать Вселенную в будущем? Ответ на это вопрос заключается в установлении средней плотности Вселенной и от величины уже упоминавшейся выше постоянной Хаббла. Современное значение плотности равно 10 -29 г/см3, что составляет 10-5 атомных единиц массы в 1 см 3. Чтобы представить такую плотность надо 1 г вещества распределить по кубу со стороной 40000 км! Если средняя плотность будет равна или несколько ниже критической плотности, Вселенная будет только расширяться, а если средняя плотность будет выше критической, то расширение Вселенной со временем прекратиться и она начнет сжиматься, возвращаясь к сингулярному состоянию.

Спустя примерно 1 млрд. лет после начала Большого Взрыва, в результате сжатия огромных газовых облаков или их протяженных газовых фрагментов, стали формироваться звезды и галактики, скопления миллионов звезд. Образование звезд теоретически рассчитано вполне достоверно. Любая звезда формируется в результате коллапса космического облака газа и пыли. Когда сжатие в центре структуры приведет к очень высоким температурам, в центре “сгустка” начинаются ядерные реакции, т.е. превращение Н в Не с выделением огромной энергии, в результате излучения которой звезда и светится.

Обнаруженные в наши дни слабые вариации реликтового излучения в пространстве, равные 0,001 % от средней величины, свидетельствуют о неравномерной плотности вещества во Вселенной. Вероятно, что это первичное различие в плотности и послужило как бы “затравкой” для возникновения в будущем скоплений галактик и галактик. Там, где плотность была выше средней, силы гравитации были больше, а, следовательно, уплотнение происходило сильнее и быстрее относительно соседних участков от которых вещество перемещалось в сторону более плотных сгущений. Так начиналось формирование галактик. Только 200 лет назад В.Гершель открыл межзвездные облака, а до этого все пространство между звездами считалось эталоном пустоты. В 1975 г. были обнаружены гигантские молекулярные облака (ГМО), масса которых в миллионы раз больше Солнечной массы.

Галактика Млечного Пути (ГМП) - одна из 100 000 миллионов галактик в наблюдаемой части Вселенной, обладает формой уплощенного диска, с диаметром около 100000 свет.лет и толщиной в 20000 свет.лет. В разрезе в центре наблюдается утолщение (балдж), которое состоит из старых звезд и ядро, скрытое облаками плотного газа (рис. 1.3). Не исключено, что в центре ГМП существует “черная дыра”, как в ядрах других спиральных галактик. Интересно, что ГМП окружена темным облаком ненаблюдаемого вещества, масса которого в 10 или более раз превышает массу всех звезд и газа в ГМП. Молодые звезды в осевой части диска окружены огромной сферической областью - гало, в которой находятся старые звезды.



Рис. 1.2. Строение Галактики Млечного пути. Центральная часть Галактики

характеризуется утолщением


Где же наше место в ГМП? Солнце, представляющее собой небольшую звезду среднего возраста типа желтого карлика, располагается в 3/5 от центра галактики в пределах главного диска. То, что оно принадлежит ГМП было установлено всего лишь 65 лет назад шведом Б.Линдбладом и голландцем Я.Оортом.

С Земли, как одной из 9 планет, вращающихся вокруг Солнца, мы видим звезды Млечного пути в виде арки, пересекающей небосвод, т.к. мы смотрим на край ГМП из ее срединной области. В 1610 г. Галилей насчитал в Млечном Пути всего 6000 звезд. Ближайшая к нам звезда, не считая Солнца, Альфа Центавра - 4 световых года. Все звезды ГМП медленно вращаются вокруг галактического центра. Солнце с планетами совершает один оборот вокруг центра ГМП за 250 млн. лет со скоростью 240 км/сек. Галактический год играет важную роль в периодизации геологической истории Земли.

Чтобы попытаться более наглядно представить шкалу времени, в рамках которой мы оперируем космическими терминами, воспользуемся шкалой Мейерса (1986).

Если 15 млрд лет = 24 часа = 1 сутки

Это время, прошедшее после начала Большого Взрыва (по современным представлениям - 20 млрд. лет).

1) Спустя 4 сек. в полночь - образование устойчивых атомов

2) 4-5 часов - возникновение галактик и звезд

3) 18 часов - образование Солнечной системы

4) 20 часов - первые формы жизни

5) 22 часа 30 минут - первые позвоночные вышли на сушу

6) 22 часа 30 минут - 23 часа 56 минут - существование динозавров

7) За 10 сек. до полуночи - первые человекообразные

8) За 0,001 сек. до полуночи - “промышленная революция”.

Солнечная система

В центре нашей планетной системы находится звезда - Солнце, в котором сосредоточено 99,866 % всей массы системы. На все 9 планет и десятки их спутников приходится только 0,134 % вещества системы. В тоже время 98 % момента количества движения, т.е. произведения массы на скорость и радиус вращения сосредоточено в планетах. В настоящее время известно более 60 спутников планет, около 100000 астероидов или малых планет и около 1011 комет, а также огромное количество мелких обломков - метеоритов.

Солнце и его параметры.

Солнце - это звезда спектрального класса G2V, довольно распространенного в ГМП. Солнце имеет диаметр. 1,4 млн.км (1 391 980 км), массу, равную 1,98·1033 км и плотность 1,4 г/см3, хотя в центре она может достигать 160 г/см3. В структуре Солнца различают внутреннюю часть или гелиевое ядро с Т.15 млн.К (0 ОС=273 К), далее располагается зона лучистого равновесия - фотосфера, мощностью до 1 тыс. км и с Т от 800 К на глубине 300 км и до 4000 К в верхних слоях, а самую внешнюю часть Солнечного диска составляет хромосфера, мощностью 10-15 тыс.км с Т.20000 К (рис. 1.4.).


Рис. 1.3. Внутренняя структура Солнца


Гранулярная структура фотосферы обусловлена всплыванием более высокотемпературных потоков газа и погружением относительно более холодных. Говоря о хромосфере и фотосфере, нельзя не сказать о явлениях солнечной активности, оказывающих влияние на нашу планету. Локальные, очень сильные магнитные поля, возникающие во внешних оболочках Солнца, препятствуют ионизованной плазме - хорошему проводнику, перемещаться поперек линий магнитной индукции. В подобных участках и возникает темное пятно, т.к. процесс перемешивания плазмы замедляется. Солнечные протуберанцы - это грандиозные выбросы хромосферного вещества, поддерживаемые сильными магнитными полями активных областей Солнца. Хромосферные вспышки, факелы, протуберанцы демонстрируют непрерывную активность Солнца.

Выше хромосферы и фотосферы располагается Солнечная корона мощностью 12- 13 млн. км и с Т. 1,5 млн. К, хорошо наблюдаемая во время полных Солнечных затмений. Вещество, располагающееся внутри Солнца, под давлением внешних слоев, сжимается и чем глубже, тем сильнее. В этом же направлении увеличивается и температура, и когда она достигает 15 млн. К - происходит идет термоядерная реакция. В ядре сосредоточено более 50 % массы Солнца, хотя радиус ядра всего 25% от радиуса Солнца. Энергия из ядра переносится к внешним сферам Солнца за счет лучистого и конвективного переноса.

В составе Солнца господствует Н, составляющий 73% по массе и Не - 25%. На остальные 2% приходятся более тяжелые элементы, также как Fe, O, C, Ne, N, Si, Mg и S, всего 67 химических элементов. Источник энергии Солнца - ядерный синтез, слияние 4-х ядер Н-протонов, образует одно ядро Не с выделением огромного количества энергии. 1 грамм водорода, принимающий участие в термоядерной реакции выделяет 6·1011 Дж энергии. Такого количества тепла хватит для нагревания 1000 м3 от 0О до точки кипения. В ходе ядерных превращений диаметр Солнца практически не меняется, т.к. тенденция к взрывному расширению уравновешивается гравитационным притяжением составных частей Солнца, стягивающим газы в сферическое тело. Солнце обладает сильным магнитным полем, полярность которого изменяется один раз в 11 лет. Эта периодичность совпадает с 22-летним циклом нарастания и убывания Солнечной активности, когда формируются Солнечные пятна с диаметром в среднем 66000 км. Солнечный ветер, исходящий во все стороны от Солнца, представляет собой поток плазмы - протоны и электроны, с альфа-частицами и ионизированными атомами С, О и других более тяжелых элементов. Скорость Солнечного ветра вблизи Земли достигает 400-500 и даже 1000 км/сек.

Солнечный ветер распространяется дальше орбиты Сатурна, образуя т.н. гелиосферу, контактирующую уже с межзвездным газом. Выделение энергии Солнцем, как и Т, остается практически неизмененным на протяжении 5,0 млрд.лет, т.е. с момента образования Солнца. Атомного горючего - Н на Солнце должно хватить по расчетам еще на 5 млрд. лет. Когда запасы Н истощатся, гелиевое ядро будет сжиматься, а внешние слои расширяться и Солнце сначала превратится в “красный гигант”, а затем - в “белый карлик”.

Тепло и свет Солнца оказывают большое влияние на земные процессы: климат, гидрологический цикл, выветривание, эрозия, существование жизни.

Солнце излучает все типы электромагнитных волн, начиная с радиоволн, длиной во многие км и, кончая, гамма-лучами (рис. 1.5). В атмосферу Земли проникает очень мало заряженных частиц, т.к. магнитное поле бронирует ее, но даже малая часть заряженных частиц способна вызвать возмущения в магнитном поле или Северное сияние. Тонкий озоновый экран задерживает на высотах около 30 км все жесткое ультрафиолетовое излучение, тем самым давая возможность существования жизни.



Рис. 1.4. Электромагнитный спектр: 1 – гамма лучи; 2 – рентгеновские лучи; 3 –

ультрафиолетовые лучи; 4 – видимый свет; 5 – инфракрасные лучи; 6 – радиоволны.

Скорость электромагнитных волн в вакууме – 299,793 км/с

Солнечной постоянной называется количество солнечной энергии, поступающей на 1 м2 поверхности атмосферы, расположенной перпендикулярно солнечным лучам. Эта величина составляет около 1370 Вт/м2. Существует примерное равновесие между поступающей солнечной энергией на Землю и её рассеиванием с поверхности Земли. Это подтверждается постоянством температуры в земной атмосфере. Радиация, исходящая от Солнца, имеющая длины волн больше 24 микрон чрезвычайно мала. Но зато остальной спектр от 0,17 до 4 микрон, подразделяют на 3 части. Ультрафиолетовая радиация (0,17- 0,35 микрон) или химическая радиация, крайне вредна для всего живого. Ее доля в общем балансе не превышает 7%. Световая радиация (0,35-0,75 микрон) составляет уже 46%. Инфракрасная радиация, невидимая для глаз (0,76-4,0 микрона) в общем балансе равняется 47%.

Активные явления на Солнце вызывают магнитные бури, меняют прохождения радиоволн, изменяют климат и т.д. Подробнее об изменениях солнечной радиации в связи с геологическими процессами будет рассказано в соответствующих главах.


Строение солнечной системы.

Вокруг Солнца вращаются девять планет. Меркурий, Венера, Земля и Марс, ближайшие к Солнцу планеты относятся к внутренним или планетам земной группы. Далее, за поясом астероидов, располагаются планеты внешней группы - гиганты Юпитер, Сатурн, Уран, Нептун и маленький Плутон, открытый лишь 1930 г. Расстояние от Солнца до Плутона равняется 40 астрономическим единицам (1 А.Е. = 150 млн. км, расстояние от Земли до Солнца). За Плутоном находится “щель” - кольцо с радиусом 2 · 10 3 А.Е., где практически нет вещества (рис. 1.6). Далее, в интервале 2·10 3 - 2·104 А.Е. располагается кольцо с огромным количеством материи в виде ядер комет с массой равной 104 масс Солнца и угловым моментом в 100 раз превышающим современный угловой момент всей Солнечной системы. Это, так называемое, внутреннее облако Оорта.



Рис. 1.5. Строение Солнечной системы. А.Е. – одна астрономическая единица (150 млн

км). Внутреннее и внешнее облака Оорта содержат огромное количество ядер комет


Еще дальше, в интервале 2·104 - 5·104 А.Е. располагается собственно облако Оорта, состоящее также из ядер комет с общей массой.100 масс Солнца и угловым моментом в 10 раз выше, чем у планетной системы. По существу, радиус в 5·104 А.Е. и определяет современную границу Солнечной системы в широком смысле этого понятия.

Знание о строение планет, особенно земной группы, представляет большой интерес для геологов, т.к. их внутренняя структура довольно близка к нашей планете (табл. 1).


Внутренние планеты.


Меркурий - одна из самых маленьких безатмосферных планет с D. 0,38 по отношению к земному, плотностью 5,42 г/см 3, с Т до + 450 О С днем на солнечной стороне и до - 170 О С ночью. Поверхность Меркурия покрыта многочисленными ударными кратерами, с диаметром до 1300 км. Застывший мир поверхности Меркурия, напоминает Лунный.

Венера по своим размерам и массе очень близка к Земле, но вращается она в другую сторону, по сравнению с остальными планетами. Венера окутана очень плотной атмосферой, состоящей из углекислого газа, а в верхних слоях на высотах в 50-70 км из серной кислоты. На этих высотах дует постоянный ветер с востока на запад со скоростью до 140 м/сек., уменьшающийся до 1,0 м/сек у поверхности. Давление в атмосфере на поверхности очень велико - 96 кг/см2 (на Земле 1 кг/см2) и Т +500 О С. Такие условия неблагоприятны для существования воды. Наличие плотной атмосферы выравнивает температурные различия дня и ночи. На Венере нет магнитного поля и это говорит о том, что ядро Венеры отличается от земного ядра. Примерно 15% поверхности Венеры занимают тессеры, относительно древние породы. На них накладываются более молодые базальтовые равнины и еще более молодые, чем равнины, громадные базальтовые вулканы.

Система Земля-Луна будет рассмотрена ниже.

Марс. Это четвертая по счету от Солнца планета намного меньше Земли, ее радиус составляет 0,53 земных. Сутки длятся на Марсе 24 часа 37 мин., а плоскость его экватора наклонена по отношению к орбите также как на Земле, что обеспечивает смену климатических сезонов.

На Марсе существует весьма разреженная углекислая атмосфера с давлением у поверхности 0,03-0,1 кг/см2. Такое низкое давление не позволяет существовать воде, которая должна испариться, либо замерзнуть. Температура на Марсе изменчива и на полюсах в полярную ночь достигает -140ОС, а на экваторе до - 90 О С. Днем на экваторе температура выше 0 О С и до +25 О С. Атмосфера Марса содержит белые облака из мелких кристаллов СО2 и Н2О. Ветры на поверхности Марса могут достигать 60 км/час, перенося пыль на большие расстояния.

Поверхность Марса подразделяется на базальтовые равнины в северном полушарии, и возвышенности - в южном, где распространены большие ударные кратеры. На Марсе существуют очень крупные вулканы, например, Олимп, высотой до 21 км и в диаметре 600 км. Это самый крупный вулкан на всех планетах Солнечной системы. Олимп принадлежит к вулканическому массиву Фарсида, состоящему из многочисленных базальтовых вулканов щитового типа, слившихся своими основаниями. В этом же массиве есть очень крупные вулканические кальдеры с диаметром до 130 км. Образование этих базальтовых вулканов произошло примерно 100 млн.лет назад и сам факт их существования свидетельствует о большой прочности марсианской литосферы и мощности коры, достигающей 70 км.

В южном полушарии Марса располагается грандиозный каньон Домены Маринер, Представляющий собой глубокий, до 10 км рифт, протянувшийся на 4000 км в широтном направлении. Таких структур на Земле нет. Большой интерес на поверхности Марса представляют явные следы флювиальной деятельности в виде сухих речных русел. Несколько миллиардов лет назад, когда атмосфера Марса не была такой разреженной, шли дожди и снег, существовали реки и озера. Присутствие воды и положительные температуры могли стимулировать возникновение жизни в виде прокариотов, цианобактерий. Недаром ведь в метеорите Мурчисон, найденном недавно в Австралии, имеющим абсолютный возраст в 4,5 млрд.лет, обнаружены следы цианобактерий внеземного (!) происхождения. В наши дни установлен факт падения на Землю метеоритов, представляющих собой осколки Марсианских пород, выбитых сильным ударом метеорита, упавшего на поверхность Марса. Вода на современной поверхности Марса сосредоточена в виде льда но под верхним слоем пород.

Марс обладает двумя маленькими спутниками Фобосом (19х27 км) и Деймосом (11х15 км), неправильной формы с кратерированной поверхностью и какими-то рытвинами, хорошо видимыми на Фобосе. Марс прошел длительный путь развития. На поверхности Марса наблюдается 3 или 4 генерации рельефа и, соответственно, пород. “Материки” - это древнейшие породы, образующие возвышенности в 4-6 км, базальтовые “равнины” моложе, а на них накладываются вулканические массивы типа Фарсиды и отдельные вулканы. По-видимому, у Марса отсутствует жидкое ядро, т.к. магнитное поле чрезвычайно слабое. Эндогенная активность на Марсе продолжалась на 1 млрд лет дольше, чем на Меркурии и Луне, где она закончилась 3,0 -2,5 млрд лет назад.


Внешние планеты


Располагающиеся за поясом астероидов планеты внешней группы сильно отличаются от планет внутренней группы. Они имеют огромные размеры, мощную атмосферу, газово-жидкие оболочки и небольшое силикатное (?) ядро (рис. 1,7).



Рис. 1.6. Возможное строение планет внешней группы (Земля дана в масштабе): 1 -

жидкий молекулярный водород; 2 – жидкий металлический водород; 3 – лед воды, метана

и аммония; 4 – твердые породы, железо

Юпитер по массе равен 317 земным, но обладает малой средней плотностью в 1,33 г/см3. Его масса в 80 раз меньше той необходимой массы, при которой небесное тело может стать звездой. Внешний вид планеты, хорошо изученный космическими аппаратами “Вояджер”, определяется полосчатой системой разновысотных и различно окрашенных облаков. Они образованы конвективными потоками, которые выносят тепло во внешние зоны. Светлые облака располагаются выше других и состоят из белых кристаллов аммиака и находятся над восходящими конвективными струями. Более низкие красно-коричневые облака состоят из кристаллов гидросульфида аммония, обладают более высокой температурой и располагаются над нисходящими конвективными струями.

На Юпитере существуют устойчивые ветры, дующие в одном направлении и достигающие скорости в 150 м/сек. В пограничных зонах облачных поясов возникают турбулентные завихрения, как, например, Большое Красное Пятно (БКПЮ), с длинной осью в 20 000-25 000 км. Полное вращение облаков в пятне осуществляется за 7 дней и его внутренняя структура все время изменяется, сохраняя лишь общую конфигурацию. Сам вихрь непрерывно дрейфует как целое в западном направлении со скоростью 3-4 м/сек и совершает полный оборот за 10-15 лет. Сейчас усиленно разрабатывается идея о том, что вихрь БКПЮ представляет собой физическое явление, называемое “солитоном” - уединенной волной - нерасплывающийся нелинейный волновой пакет.

Атмосфера Юпитера достигает 1000 км, а под ней могут находиться оболочки из жидкого молекулярного водорода, а еще ниже - металлического водорода. В центре планеты располагается силикатное (каменное?) ядро небольших размеров. Магнитное поле Юпитера в 10 раз превышает по напряженности магнитное поле Земли, а, кроме того, Юпитер окружен мощными радиационными поясами. Возможно, мощное магнитное поле обусловлено быстрым вращением планеты (9 час. 55 мин.).

У Юпитера существует небольшое кольцо и 16 спутников, из которых 4 крупных, так называемых Галилеевых, открытых еще в 1610 г. Галилео Галилеем - Ио, Европа, Ганимед, Каллисто. Ближайший спутник к Юпитеру это Ио, по размерам, массе и плотности похожий на Луну. Особенностью Ио являются извержения многочисленных вулканов, изливающих яркие - красные, желтые, оранжевые потоки серы и белые потоки серного ангидрида. Со спутников зафиксированы извержения из кратеров конусовидных вулканов. Приливные возмущения со стороны Юпитера приводят к разогреву недр Ио.

Европа близкая по своим параметрам Луне, покрыта льдом воды, мощностью до 100 км, в котором видны протяженные трещины (рис. 1.8). Судя по тому, что на поверхности Европы почти нет ударных кратеров, она очень молодая.


Рис. 1.7. Ледяная поверхность спутника Юпитера – Европы. Снимок получен 16 декабря

1997 г. с КА «Галлилей» с высоты 560 км. Разрешающая способность снимка – 6 м (по

материалам NASA


Ганимед, самый крупный из галилеевых спутников (он больше, чем планета Меркурий), обладает плотностью 1,94 г/см3 и сложен смесью льда воды и силикатов. Каллисто по своим размерам и плотности похож на Ганимед и также сложен льдом воды и силикатами. Однако, на участках темного цвета на поверхности

Каллисто много ударных кратеров, что говорит в пользу древнего возраста этих участков. Кольцевая структура Вальхалла имеет диаметр в 300 км. Не исключено, что это след от удара крупного космического тела. Все остальные небольшие спутники Юпитера обладают неправильной, угловатой формой, а их размеры колеблются в поперечнике от 16 до 260 км.

Сатурн занимает второе место по размерам среди планет-гигантов, однако его плотность очень мала - 0,6



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: