Касательная к гиперболе.




Касательная к окружности, эллипсу, гиперболе, параболе.

 

До этого момента мы занимались нахождением уравнений касательных к графикам однозначных функций вида y = f(x) в различных точках. Канонические уравнения кривых второго порядка не являются однозначными функциями. Но окружность, эллипс, гиперболу и параболу мы можем представить комбинацией двух однозначных функций и уже после этого составлять уравнения касательных по известной схеме.

Касательная к окружности.

Окружность с центром в точке и радиусом R задается равенством .

Запишем это равенство в виде объединения двух функций:

Здесь первая функция соответствует верхней полуокружности, вторая - нижней.

Таким образом, чтобы составить уравнение касательной к окружности в точке , принадлежащей верхней (или нижней) полуокружности, мы находим уравнение касательной к графику функции (или ) в указанной точке.

Легко показать, что в точках окружности с координатами и касательные параллельны оси абсцисс и задаются уравнениями и соответственно (на рисунке ниже они показаны синими точками и синими прямыми), а в точках и - параллельны оси ординат и имеют уравнения и соответственно (на рисунке ниже они отмечены красными точками и красными прямыми).

 

Касательная к эллипсу.

Эллипс с центром в точке с полуосями a и b задается уравнением .

Эллипс также как и окружность можно задать объединением двух функций - верхнего и нижнего полуэллипса:

Касательные в вершинах эллипса параллельны либо оси абсцисс (на рисунке ниже изображены синими прямыми), либо оси ординат (на рисунке ниже изображены красными прямыми).

Пример.

Написать уравнения касательных к эллипсу в точках с абсциссами x=2.

Решение.

Найдем сначала ординаты точек касания, соответствующих абсциссам x=2. Для этого подставим значение x=2 в уравнение эллипса и решим полученное уравнение относительно y:

Таким образом, получаем две точки касания и , принадлежащие верхнему и нижнему полуэллипсу соответственно.

Найдем уравнения полуэллипсов, для этого разрешим уравнение эллипса относительно y:

То есть, верхний полуэллипс задается функцией , а нижний - .

Теперь можем действовать по стандартному алгоритму для составления уравнения касательной к графику функции в точке.

Первая касательная в точке :

Вторая касательная в точке :

Графическая иллюстрация.

Касательная к гиперболе.

Гипербола с центром в точке и вершинами и задается равенством (рисунок ниже слева), а с вершинами и - равенством (рисунок ниже справа).

В виде объединения двух функций гипербола представима как

или .

В вершинах гиперболы касательные параллельны оси Оу для первого случая и параллельны оси Ох для второго.

Таким образом, для нахождения уравнения касательной к гиперболе, выясняем какой функции принадлежит точка касания, и действуем обычным образом.

Возникает логичный вопрос, как определить какой из функций принадлежит точка. Для ответа на него подставляем координаты в каждое уравнение и смотрим, какое из равенств обращается в тождество. Рассмотрим это на примере.

Пример.

Составьте уравнение касательной к гиперболе в точке .

Решение.

Запишем гиперболу в виде двух функций:

Выясним к какой функции принадлежит точка касания .

Для первой функции , следовательно, точка не принадлежит графику этой функции.

Для второй функции , следовательно, точка принадлежит графику этой функции.

Находим угловой коэффициент касательной:

Таким образом, уравнение касательной имеет вид .

Графическая иллюстрация.

 

 

Касательная к параболе.

Для составления уравнения касательной к параболе вида в точке пользуемся стандартной схемой, и уравнение касательной записываем как . Касательная к графику такой параболы в вершине параллельна оси Ох.

Параболу сначала зададим объединением двух функций. Для этого разрешим это уравнение относительно y:

Теперь выясняем к какой из функций принадлежит точка касания и действуем по стандартной схеме.

Касательная к графику такой параболы в вершине параллельна оси Оу.

Пример.

Написать уравнение касательной к графику параболы , если угол наклона касательной равен .

Решение.

Представим параболу через две функции:

Мы знаем, что угловой коэффициент касательной равен значению производной функции в точке и равен тангенсу угла наклона: . Из этого равенства мы можем найти абсциссу точки касания.

Для первой функции:

Полученное уравнение действительных корней не имеет, следовательно, к этой функции не существует касательной с углом наклона .

Для второй функции:

Получаем точку касания .

Таким образом, уравнение искомой касательной имеет вид .



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-10-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: