История развития процессора.




Первым этапом, затронувшим период с 1940-х по конец 1950-х годов, было создание процессоров с использованием электромеханических реле, ферритовых сердечников (устройств памяти) и вакуумных ламп. Они устанавливались в специальные разъёмы на модулях, собранных в стойки. Большое количество таких стоек, соединённых проводниками, в сумме представляли процессор. Отличительной особенностью была низкая надёжность, низкое быстродействие и большое тепловыделение.

Вторым этапом, с середины 1950-х до середины 1960-х, стало внедрение транзисторов. Транзисторы монтировались уже на близкие к современным по виду платам, устанавливаемым в стойки. Как и ранее, в среднем процессор состоял из нескольких таких стоек. Возросло быстродействие, повысилась надёжность, уменьшилось энергопотребление.

Третьим этапом, наступившим в середине 1960-х годов, стало использование микросхем. Первоначально использовались микросхемы низкой степени интеграции, содержащие простые транзисторные и резисторные сборки, затем по мере развития технологии стали использоваться микросхемы, реализующие отдельные элементы цифровой схемотехники (сначала элементарные ключи и логические элементы, затем более сложные элементы - элементарные регистры, счётчики, сумматоры), позднее появились микросхемы, содержащие функциональные блоки процессора - микропрограммное устройство, арифметическо-логическое устройство, регистры, устройства работы с шинами данных и команд.

Четвёртым этапом, в начале 1970-х годов, стало создание, благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микропроцессора - микросхемы, на кристалле которой физически были расположены все основные элементы и блоки процессора. Фирма Intel в 1971 году создала первый в мире 4-разрядный микропроцессор 4004, предназначенный для использования в микрокалькуляторах. Постепенно практически все процессоры стали выпускаться в формате микропроцессоров. Исключением долгое время оставались только малосерийные процессоры, аппаратно оптимизированные для решения специальных задач (например, суперкомпьютеры или процессоры для решения ряда военных задач), либо процессоры, к которым предъявлялись особые требования по надёжности, быстродействию или защите от электромагнитных импульсов и ионизирующей радиации. Постепенно, с удешевлением и распространением современных технологий, эти процессоры также начинают изготавливаться в формате микропроцессора.

Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали ещё по крайней мере 10-15 лет, и только в начале 1980-х годов микропроцессоры вытеснили своих старших собратьев. Тем не менее, центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы, построенные на основе микросхем большой и сверхбольшой степени интеграции.

Переход к микропроцессорам позволил потом создать персональные компьютеры, которые проникли почти в каждый дом.

Первым общедоступным микропроцессором был 4-разрядный Intel 4004, представленный 15 ноября 1971 года корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 92,6 кГц и стоил 300 долл.

Далее его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных настольных процессоров. Из-за распространённости 8-разрядных модулей памяти был выпущен дешевый 8088, упрощенная версия 8086, с 8-разрядной шиной памяти.

Затем проследовала его модификация, 80186.

В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 Мб памяти.

Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 Гб оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели.

Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

За годы существования микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне. Например, архитектура Intel x86, развившаяся вначале в 32-битную IA-32, а позже в 64-битную x86-64 (которая у Intel называется EM64T). Процессоры архитектуры x86 вначале использовались только в персональных компьютерах компании IBM (IBM PC), но в настоящее время всё более активно используются во всех областях компьютерной индустрии, от суперкомпьютеров до встраиваемых решений. Также можно перечислить такие архитектуры как Alpha, POWER, SPARC, PA-RISC, MIPS (RISC-архитектуры) и IA-64 (EPIC-архитектура).

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5х5х0,3 см), вставляющегося в ZIF-сокет (AMD) или на подпруживающую конструкцию - LGA (Intel). Особенностью разъёма LGA является то, что выводы перенесены с корпуса процессора на сам разъём - socket, находящийся на материнской плате. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов.

 

Работа процессора

Работает процессор под управлением программы, находящейся в оперативной памяти.

Блок управления помимо прочего отвечает за вызов очередной команды и определение ее типа.

Арифметико-логическое устройство, получив данные и команду, выполняет указанную операцию и записывает результат в один из свободных регистров.

Текущая команда находится в специально для неё отведенном регистре команд. В процессе работы с текущей командой увеличивается значение так называемого счетчика команд, который теперь указывает на следующую команду (если не было команды перехода или останова).

Часто команду представляют как структуру, состоящую из записи операции (которую требуется выполнить) и адресов ячеек исходных данных и результата. По адресам указанным в команде берутся данные и помещаются в обычные регистры (в смысле не в регистр команды), получившийся результат тоже сначала оказывается в регистре, а уж потом перемещается по своему адресу, указанному в команде.

Конвейерная архитектура

Конвейерная архитектура была введена в центральный процессор с целью повышения быстродействия. Обычно для выполнения каждой команды требуется осуществить некоторое количество однотипных операций, например: выборка команды из ОЗУ, дешифровка команды, адресация операнда в ОЗУ, выборка операнда из ОЗУ, выполнение команды, запись результата в ОЗУ. Каждую из этих операций сопоставляют одной ступени конвейера. Например, конвейер микропроцессора с архитектурой MIPS-I содержит четыре стадии:

  • получение и декодирование инструкции,
  • адресация и выборка операнда из ОЗУ,
  • выполнение арифметических операций,
  • сохранение результата операции.

После освобождения k-й ступени конвейера она сразу приступает к работе над следующей командой. Если предположить, что каждая ступень конвейера тратит единицу времени на свою работу, то выполнение команды на конвейере длиной в n ступеней займёт n единиц времени, однако в самом оптимистичном случае результат выполнения каждой следующей команды будет получаться через каждую единицу времени.

Действительно, при отсутствии конвейера выполнение команды займёт n единиц времени (так как для выполнения команды по-прежнему необходимо выполнять выборку, дешифровку и т. д.), и для исполнения m команд понадобится n*m единиц времени; при использовании конвейера (в самом оптимистичном случае) для выполнения m команд понадобится всего лишь n+m единиц времени.

Факторы, снижающие эффективность конвейера:

  1. Простой конвейера, когда некоторые ступени не используются (например, адресация и выборка операнда из ОЗУ не нужны, если команда работает с регистрами).
  2. Ожидание: если следующая команда использует результат предыдущей, то последняя не может начать выполняться до выполнения первой (это преодолевается при использовании внеочередного выполнения команд — out-of-order execution).
  3. Очистка конвейера при попадании в него команды перехода (эту проблему удаётся сгладить, используя предсказание переходов).

Современные процессоры имеют более 30 ступеней в конвейере, что повышает производительность процессора, но, однако, приводит к увеличению длительности простоя (например, в случае ошибки в предсказании условного перехода). Не существует единого мнения по поводу оптимальной длины конвейера: различные программы могут иметь различные требования.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: