Функционирование сети Хопфилда.




ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Бинарные системы [1]

Архитектура сети Хопфилда приведена на Рис. 1. В основополагающем варианте сеть Хопфилда имеет пороговую функцию. Выход такого нейрона равен единице, если взвешенная сумма выходов с других нейронов больше порога Tj, в противном случае она равна нулю. Он вычисляется следующим образом:

, (1)

OUT, = 1, если NETjj,

OUT. = 0, если NETjj,

OUT не изменяется, если NETj = Тj,

Рис. 1. Однослойная сеть с обратными связями.

 

Состояние сети – это множество текущих значений сигналов OUT от всех нейронов. Выходом бинарного нейрона может быть только ноль или единица (промежуточных уровней нет), следовательно, текущее состояние сети является двоичным числом, каждый бит которого является сигналом OUT некоторого нейрона.

Функционирование сети легко визуализируется геометрически. На рис. 2а показан случай двух нейронов в выходном слое, причем каждой вершине квадрата соответствует одно из четырех состояний системы (00, 01, 10, 11). На рис. 2б показана трехнейронная система, представленная кубом (в трехмерном пространстве), имеющим восемь вершин, каждая из которых помечена трехбитовым бинарным числом. В общем случае система с n нейронами имеет 2nразличных состояний и представляется n-мерным гиперкубом.

Рис. 2а. Два нейрона порождают систему с четырьмя состояниями

Рис. 2б. Три нейрона порождают систему с восемью состояниями

Когда подается новый входной вектор, сеть переходит из вершины в вершину, пока не стабилизируется. Устойчивая вершина определяется сетевыми весами, текущими входами и величиной порога. Если входной вектор частично неправилен или неполон, то сеть стабилизируется в вершине, ближайшей к желаемой.

Устойчивость сети Хопфилда.

Как и в других сетях, веса между слоями в этой сети могут рассматриваться в виде матрицы W. Сеть с обратными связями является устойчивой, если ее матрица симметрична и имеет нули на главной диагонали, т. е. если wij = wji и wii = 0 для всех i.

Обучение сети Хопфилда.

Сеть с обратной связью формирует ассоциативную память. Подобно человеческой памяти по заданной части нужной информации вся информация извлекается из «памяти». Чтобы организовать ассоциативную память с помощью сети с обратными связями, веса должны выбираться так, чтобы образовывать энергетические минимумы в нужных вершинах единичного гиперкуба.

Хопфилд разработал ассоциативную память с непрерывными выходами, изменяющимися в пределах от +1 до –1, соответствующих двоичным значениям 0 и 1, Запоминаемая информация кодируется двоичными векторами и хранится в весах согласно следующей формуле:

(2)

где т – число запоминаемых выходных векторов;

d – номер запоминаемого выходного вектора;

OUTi,j – i-компонента запоминаемого выходного вектора.

Весовой массив W может быть найден вычислением внешнего произведения каждого запоминаемого вектора с самим собой (если требуемый вектор имеет n компонент, то эта операция образует матрицу размером п х п) и суммированием матриц, полученных таким образом. Это может быть записано в виде

,

где D i – i-й запоминаемый вектор-строка.

 

Функционирование сети Хопфилда.

Как только веса заданы, сеть может быть использована для получения запомненного выходного вектора по данному входному вектору, который может быть частично неправильным или неполным. Для этого выходам сети сначала придают значения этого входного вектора. Затем входной вектор убирается и сети предоставляется возможность «расслабиться», опустившись в ближайший глубокий минимум. Сеть идущая по локальному наклону функции энергии, может быть захвачена локальным минимумом, не достигнув наилучшего в глобальном смысле решения.

Алгоритм функционирования сети следующий (p – номер итерации):

1. На входы сети подается неизвестный сигнал. Фактически его ввод осуществляется непо­сред­ственной установкой значений аксонов:

yi(0) = xi , i = 0...n-1, (2)

поэтому обозначение на схеме сети входных синапсов в явном виде носит чисто условный характер. Ноль в скобке справа от yi означает нулевую итерацию в цикле работы сети.

2. Рассчитывается новое состояние нейронов

, j=0...n-1 (3)

и новые значения аксонов

, где f- активационная функция порогового типа.

3. Проверка, изменились ли выходные значения аксонов за последнюю итерацию. Если да – переход к пункту 2, иначе (если выходы стабилизировались) – конец. При этом выходной вектор представляет собой образец, наилучшим образом сочетающийся с входными данными.

 

Иногда сеть не может провести распознавание и выдает на выходе несуществующий образ. Это связано с проблемой ограниченности возможностей сети. Для сети Хопфилда число запоминаемых образов m не должно превышать величины, примерно равной 0.15•n. Кроме того, если два образа А и Б сильно похожи, они, возможно, будут вызывать у сети перекрестные ассоциации, то есть предъявление на входы сети вектора А приведет к появлению на ее выходах вектора Б и наоборот.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: