Закон всемирного тяготения




Реферат по физике

 

 

ФМа
1107
1 курс
Соловьева Ксения Андреевна

Оглавление

Кинематика. 3

Прямолийнейное движение. 3

Движение по окружности. 4

Динамика. 6

Законы Ньютона. 10

Закон всемирного тяготения. 11

Законы сохранения. 13

Статика. 13


 

Кинематика

Любое физическое явление или процесс в окружающем нас материальном мире представляет собой закономерный ряд изменений, происходящих во времени и пространстве. Механическое движение, то есть изменение положения данного тела (или его частей) относительно других тел, – это простейший вид физического процесса. Механическое движение тел изучается в разделе физики, который называется механикой. Основная задача механики – определить положение тела в любой момент времени.

Одна из основных частей механики, которая называется кинематикой, рассматривает движение тел без выяснения причин этого движения. Кинематика отвечает на вопрос: как движется тело? Другой важной частью механики является динамика, которая рассматривает действе одних тел на другие как причину движения. Динамика отвечает на вопрос: почему тело движется именно так, а не иначе?

 

Прямолийнейное движение

Механика – одна из самых древних наук. Определенные познания в этой области были известны задолго до новой эры (Аристотель (IV век до н. э.), Архимед(III в. до н.э.)). Однако, качественная формулировка законов механики началась только в XVII веке н. э., когда Г. Галилей открыл кинематический закон сложения скоростей и установил законы свободного падения тел. Через несколько десятилетий после Галилея великий И. Ньютон[I] (1643–1727) сформулировал основные законы динамики.

В механике Ньютона движение тел рассматривается при скоростях, много меньше скорости света в пустоте. Ее называют классической или ньютоновскоймеханикой в отличие от релятивистской механики, созданной в начале XX века главным образом благодаря работам А. Эйнштейна (1879–1956).

Прямолинейное движение — механическоедвижение, происходящее вдоль прямой линии. То есть, при прямолинейном движении материальной точки траектория представляет собой прямую линию. Скорость прямолинейногодвижения — это векторная[II] величина, совпадающая по направлению с перемещением.

 

Движение по окружности

Движение тела по окружности с постоянной по модулю скоростью — это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.

Положение тела на окружности определяется радиусом-вектором r⃗ r→, проведенным из центра окружности. Модуль радиуса-вектора равен радиусу окружности R

 

За время Δt тело, двигаясь из точки А в точку В, совершает перемещение Δr⃗ Δr→, равное хорде АВ, и проходит путь, равный длине дуги l.

Радиус-вектор поворачивается на угол Δφ. Угол выражают в радианах.

Скорость υ⃗ υ→ движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью. Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени Δt за который эта дуга пройдена:

υ=lΔt. υ=lΔt.

Скалярная физическая величина, численно равная отношению угла поворота радиуса-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью:

ω=ΔφΔt. ω=ΔφΔt.

В СИ единицей угловой скорости является радиан в секунду (рад/с).

При равномерном движении по окружности угловая скорость и модуль линейной скорости — величины постоянные: ω = const; υ = const.

Положение тела можно определить, если известен модуль радиуса-вектора r⃗ r→ и угол φ, который он составляет с осью Ox (угловая координата). Если в начальный момент времени t0 = 0 угловая координата равна φ0, а в момент времени t она равна φ, то угол поворота Δφ радиуса-вектора за время Δt=t−t0=t Δt=t−t0=t равен Δφ=φ−φ0 Δφ=φ−φ0. Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности:

 

Понятие материальной точки играет важную роль в механике.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает некоторую линию, которую называют траекторией движения тела.

 

Динамика

Динамика – раздел механики, который изучает взаимодействия тел, причины возникновения движения и тип возникающего движения. Взаимодействие – процесс, в ходе которого тела оказывают взаимное действие друг на друга. В физике все взаимодействия обязательно парные. Это значит, что тела взаимодействуют друг с другом парами. То есть всякое действие обязательно порождает противодействие.

Сила – это количественная мера интенсивности взаимодействия тел. Сила является причиной изменения скорости тела целиком или его частей (деформации). Сила является векторной величиной. Прямая, вдоль которой направлена сила, называется линией действия силы. Сила характеризуется тремя параметрами: точкой приложения, модулем (численным значением) и направлением. В Международной системе единиц (СИ) сила измеряется в Ньютонах (Н). Для измерения сил используют откалиброванные пружины. Такие откалиброванные пружины называются динамометрами. Сила измеряется по растяжению динамометра.

Сила, оказывающая на тело такое же действие, как и все силы, действующие на него, вместе взятые, называется равнодействующей силой. Она равна векторной сумма всех сил, действующих на тело:

Чтобы найти векторную сумму нескольких сил нужно выполнить чертеж, где правильно нарисовать все силы и их векторную сумму, и по данному чертежу с использованием знаний из геометрии[III] (в основном это теорема Пифагора и теорема косинусов) найти длину результирующего вектора.

Виды сил:

1. Сила тяжести. Приложена к центру масс тела и направлена вертикально вниз (или что тоже самое: перпендикулярно линии горизонта), и равна:

где: g - ускорение свободного падения, m - масса тела. Не перепутайте: сила тяжести перпендикулярна именно горизонту, а не поверхности на которой лежит тело. Таким образом, если тело лежит на наклонной поверхности, сила тяжести по-прежнему будет направлена строго вниз.

2. Сила трения. Приложена к поверхности соприкосновения тела с опорой и направлена по касательной к ней в сторону противоположную той, куда тянут, или пытаются тянуть тело другие силы.

3. Сила вязкого трения (сила сопротивления среды). Возникает при движении тела в жидкости или газе и направлена против скорости движения.

4. Сила реакции опоры. Действует на тело со стороны опоры и направлена перпендикулярно опоре от нее. Когда тело опирается на угол, то сила реакции опоры направлена перпендикулярно поверхности тела.

5. Сила натяжения нити. Направлена вдоль нити от тела.

6. Сила упругости. Возникает при деформации тела и направлена против деформации.

Обратите внимание и отметьте для себя очевидный факт: если тело находится в покое, то равнодействующая сил равна нулю.

 

В большинстве задач по динамике на тело действует больше чем одна сила. Для того чтобы найти равнодействующую всех сил в этом случае можно пользоваться следующим алгоритмом:

Найдем проекции всех сил на ось ОХ и просуммируем их с учетом их знаков. Так получим проекцию равнодействующей силы на ось ОХ.

Найдем проекции всех сил на ось OY и просуммируем их с учетом их знаков. Так получим проекцию равнодействующей силы на ось OY.

Результирующая всех сил будет находится по формуле (теореме Пифагора):

При этом, обратите особое внимание на то, что:

Если сила перпендикулярна одной из осей, то проекция именно на эту ось будет равна нулю.

Если при проецировании силы на одну из осей «всплывает» синус угла, то при проецировании этой же силы на другую ось всегда будет косинус (того же угла). Запомнить при проецировании на какую ось будет синус или косинус легко. Если угол прилежит к проекции, то при проецировании силы на эту ось будет косинус.

Если сила направлена в ту же сторону что и ось, то ее проекция на эту ось будет положительной, а если сила направлена в противоположную оси сторону, то ее проекция на эту ось будет отрицательной.

Законы Ньютона

Первый закон Ньютона. Если на тело не действуют силы или их действие скомпенсировано, то данное тело находится в состоянии покоя или равномерного прямолинейного движения.

Свойство тел сохранять свою скорость при отсутствии действия на него других тел называется инерцией. Масса тела – количественная мера его инертности. В СИ она измеряется в килограммах.

Системы отсчета, в которых выполняется первый закон Ньютона, называются инерциальными. Системы отсчета, движущиеся относительно инерциальных с ускорением, называются неинерциальными.

 

Сила – количественная мера взаимодействия тел. Сила – векторная величина и измеряется в ньютонах (Н). Сила, которая производит на тело такое же действие, как несколько одновременно действующих сил, называется равнодействующей этих сил.

Второй закон Ньютона. Ускорение тела прямо пропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

или

Если два тела взаимодействуют друг с другом, то ускорения этих тел обратно пропорциональны их массам.

Третий закон Ньютона. Силы, с которыми тела взаимодействуют друг с другом, равны по модулю и направлены вдоль одной прямой в противоположные стороны.

 

Закон всемирного тяготения

В ньютоновской теории каждое массивное тело порождает силовое поле притяжения к этому телу, называемое гравитационным полем. Это поле потенциально.

Гравитационное взаимодействие в теории Ньютона распространяется мгновенно, так как сила тяготения зависит только от взаимного расположения притягивающихся тел в данный момент времени. Также для ньютоновских гравитационных сил справедлив принцип суперпозиции: сила тяготения, действующая на частицу со стороны нескольких других частиц, равна векторной сумме сил притяжения со стороны каждой частицы. Сила тяготения сообщает всем телам одинаковое ускорение, независимо от массы, химического состава и других свойств тел (принцип эквивалентности)[2].

В случае, если поле создаётся расположенной в начале координат точечной массой функция гравитационного потенциала определяется формулой:

при этом потенциал на бесконечности принят равным нулю.

В общем случае, когда плотность распределена произвольно, удовлетворяет уравнению Пуассона:

Решение данного уравнения записывается в виде:

Здесь — радиус-вектор точки, в которой определяется потенциал, — радиус-вектор элемента объёма c плотностью вещества, а интегрирование охватывает все такие элементы; — произвольная постоянная.

Сила притяжения, действующая в гравитационном поле на материальную точку с массой {\displaystyle m}, связана с потенциалом формулой:

Если поле создаётся точечной массой расположенной в начале координат, то на точку массой действует сила

Величина этой силы зависит только от расстояния между массами, но не от направления радиус-вектора Сферически симметричное тело создаёт за своими пределами такое же поле, как материальная точка той же массы, расположенная в центре тела.

Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера. В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам. Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений.

 

Законы сохранения



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-01-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: