Комплексный чертёж точки.




Дисциплина «Начертательная геометрия и инженерная графика»

Проекции и их свойства

1. Предмет и метод инженерной графики. Задачи курса.

2. Центральная проекция и её свойства.

3. Параллельная проекция и её свойства.

4. Аксонометрическая проекция.

5. Комплексный чертёж (Метод Монжа): общие представления.

Комплексный чертёж точки.

1. Предмет и метод инженерной графики. Задачи курса

Учебная дисциплина «Начертательная геометрия и инженерная графика» даёт студентам знания, которые необходимы им для общения с техническими специалистами на специальном графическом языке. Дисциплина включает следующие разделы: начертательную геометрию, машиностроительное черчение, основы компьютерной графики.

В первом семестре мы будем с вами изучать начертательную геометрию, представляющую собой раздел геометрии, в котором пространственные формы предметов действительного мира и соответствующие геометрические закономерности изучаются при помощи изображений на плоскости - чертежей.

Чертёж при этом является инструментом, с помощью которого изучаются геометрические формы предметов, и выполняется решение пространственных задач. Не всякое изображение предмета на листе бумаги позволяет точно определить его геометрическую фигуру.

Для того чтобы чертёж был геометрически равноценным изображаемому предмету, он должен быть построен при помощи метода проецирования (от латинского слова projecere – бросать вперёд). Поэтому чертежи, применяемые в инженерной графике, носят название проекционных чертежей.

Среди требований, предъявляемых к чертежам, наиболее существенными являются:

1) наглядность чертежа (давать пространственное представление изображаемого предмета);

2) обратимость чертежа (по нему можно однозначно воспроизвести форму и размеры изображаемого предмета).

Перед НГ стоят следующие основные задачи:

1) разработка способов построения чертежей пространственных предметов на плоскости;

2) изучение способов решения и исследования пространственных задач при помощи чертежей;

3) развитие пространственного воображения.

В настоящее время чертежи используются практически во всех областях науки и техники. Ни одна, даже самая простая деталь не изготавливается без чертежа. «Чертёж является языком техники», - говорил один из создателей начертательной геометрии французский учёный и инженер Гаспар Монж (11746-1818). Причём этот язык является интернациональным, он понятен любому технически грамотному специалисту, независимо от того, на каком языке он говорит. Дополняя высказывание Монжа, профессор В.И. Курдюмов (1853-1904) – автор классического русского учебника начертательной геометрии - писал: «Если чертёж является языком техники, то начертательная геометрия служит грамматикой этого языка, так как она учит нас правильно читать чужие и излагать наши собственные мысли, пользуясь в качестве слов одними только линиями и точками, как элементами всякого изображения.

2. Центральная проекция и её свойства

Пусть дана некоторая плоскость П/, которую назовём плоскостью проекций, и вне её т.S, называемая центром проекций (Рис. 1). Для построения проекций некоторой т.А проводят через неё и центр проекций S прямую SA, называемую проецирующей прямой, а затем находят точку пересечения этой прямой с плоскостью П/ - точку A/. Эта точка и называется центральной проекцией точки А на плоскость П/.

SA – проецирующая прямая (луч),

A/ - центральная проекция т.А.

Проецирование можно выполнить для любой точки пространства, за исключением точек, лежащих в плоскости, проходящей через центр проекций S и параллельной плоскости проекций П/. За проекции таких точек принято считать бесконечно удалённые точки плоскости П/, которые называются несобственными точками плоскости. И только для центра проекций S проекцию построить нельзя, т.к. проецирующая прямая при этом становится неопределённой.

Если задана какая-либо геометрическая фигура, то проекцией этой фигуры будет являться совокупность проекций всех её точек.

Свойства центрального проецирования:

1) проекцией точки является точка;

2) проекцией прямой линии является прямая линия;

3) проекцией точки, лежащей на некоторой прямой, является точка, лежащая на проекции данной прямой.

Метод центрального проецирования слишком сложен и в значительной степени искажает форму и размеры оригинала, т.к. не сохраняет параллельности прямых и отношения отрезков. Поэтому в технике этот метод не применяется, а используется лишь художниками при написании картин – метод перспективы (глаз человека устроен по принципу центральной проекции).

3. Параллельная проекция и её свойства

Параллельная проекция является частным случаем центральной, когда центр проекций S удалён в бесконечность. В этом случае задаётся направление проецирования, //-но которому проводятся проецирующие лучи.

Пусть дана плоскость проекций П/ и точка А (Рис. 2). Для построения проекции точки проведём через т.А проецирующую прямую // заданному направлению проецирования S. Затем определим точку пересечения этой прямой с плоскостью П/.

Рис. 2 A/ - параллельная проекция т.А.

Поскольку // проекция является частным случаем центральной, то 3 её свойства распространяются и на //-ую проекцию,

+ свои свойства:

4) проекциями //-ых прямых являются //-ые прямые;

5) отношение проекций отрезков, лежащих на //-ых прямых или на одной и той же прямой, равны отношению самих отрезков;

6) проекция фигуры не меняется при //-ном переносе плоскости проекций.

Эти свойства параллельной проекции обеспечивают более простое построение чертежа, меньше искажающего форму и размеры оригинала по сравнению с центральной проекцией. Так, в связи с сохранением параллельности прямых параллельной проекцией параллелограмма является параллелограмм, а трапеции – тоже трапеция, в то время как в центральной проекции эти фигуры проецируются в четырёхугольники произвольного вида.

В зависимости от величины угла, образованного направлением проецирования S и плоскостью проекций П/ , //-ное проецирование делится на:

1) ортогональное или прямоугольное (90о);

2) косоугольное проецирование.

Ортогональная проекция получила наибольшее распространение в технических чертежах, т.к. она позволяет наиболее легко судить о размерах изображаемых предметов.

Рассмотренные выше методы проецирования однозначно решают прямую задачу – по данному оригиналу построить его проекционный чертёж. Однако обратная задача – по данному проекционному чертежу воспроизвести (реконструировать) оригинал – не решается однозначно. Эта задача допускает бесчисленное множество решений, т.к. точку A/, например, можно считать проекцией любой точки проецирующей прямой, проходящей через т.А. Таким образом, рассмотренные проекционные чертежи не обладают свойством обратимости. Для получения обратимых чертежей нужно дополнить проекционный чертёж необходимыми данными. Существуют различные методы такого дополнения. В данном курсе мы будем рассматривать два вида обратимых чертежей, а именно, аксонометрические и комплексные чертежи в ортогональных проекциях.

4. Аксонометрическая проекция

Название аксонометрическа я происходит от древнегреческих слов аксон – ось и метрио - измеряю. Метод аксонометрического проецирования состоит в том, что данная фигура вместе с осями прямоугольной системы координат, которым она отнесена в пространстве, проецируется на некоторую плоскость проекций, называемую аксонометрической плоскостью проекций или картинной плоскостью.

В зависимости от вида проецирования аксонометрическая проекция называется:

1) центральной, когда используется центральное проецирование;

2) параллельной, когда используется параллельное проецирование.

Причём в последнем случае аксонометрическая проекция может быть:

а) косоугольной (при косоугольном проецировании);

б) ортогональной (при ортогональном проецировании).

Центральная аксонометрия в нашем курсе не рассматривается и всё, что мы будем говорить далее, касается лишь параллельной и ортогональной проекций.

На Рис. 3 показана схема проецирования т.А на некоторую аксонометрическую плоскость проекций По по направлению проецирования S.

Рис. 3

OXYZ - натуральная система координат,

OX, OY, OZ - оси натуральной системы координат,

OoXoYoZo - аксонометрическая система координат,

OXo,OYo, OZo - оси аксонометрической системы координат,

ОАхА1А - натуральная координатная ломаная, определяет положение т. А относительно натуральной системы координат OXYZ. Звенья этой ломаной являются отрезками координат.

Длины отрезков координат т.А, измеренные установленной натуральной масштабной единицей е:

- натуральные координаты т.А

е – натуральная масштабная единица

А0 - аксонометрическая проекция т. А,

00 Ах0 А10 А0 - аксонометрическая координатная ломаная,

ex,ey,ez - аксонометрические масштабные единицы по соответствующим осям координат,

Т.к. при параллельном проецировании сохраняется простое отношение трёх точек, получим:

Мы получили основное свойство аксонометрических проекций:

Аксонометрические координаты точек, измеренные аксонометрическими масштабами, численно равны натуральным. Таким образом, особенностью рассматриваемого метода аксонометрии заключается в том, что это есть координатный метод построения наглядного однокартинного чертежа, обладающего свойством обратимости.

Для удобства построения аксонометрических чертежей используют показатели искажения – отношения аксонометрического масштаба к соответствующему натуральному масштабу:

(k); (m); (n).

В зависимости от величины коэффициентов искажения аксонометрические проекции делятся на:

1) изометрические - u = v = w,

2) диметрические - 2 равны, 3-ий не равен им,

3) триметрические - все 3 коэффициента разные.

Приведём теорему, которая даёт ответ на вопрос, как можно выбрать на чертеже аксонометрические оси и аксонометрические масштабы:

Теорема Польке – Шварца:

3 отрезка произвольной длины, лежащие в одной плоскости и выходящие из одной точки под произвольными углами друг к другу, представляют собой //-ую проекцию 3 равных отрезков, отложенных на осях прямоугольной системы координат от её начала.

Стандартизовано 5 видов аксонометрических проекций. ГОСТ 2.317-69.

 

5. Комплексный чертёж (Метод Монжа): общие представления.

Комплексный чертёж точки.

Наибольшее применение на практике получил чертёж, составленный из двух или более связанных между собой ортогональных проекций изображаемой фигуры. Такой чертёж называется комплексным чертежом в ортогональных проекциях или комплексным чертежом.

Принцип образования чертежа состоит в том, что данная фигура проецируется ортогонально на 2 взаимно ^-е плоскости проекций, которые затем соответствующим образом совмещают с плоскостью чертежа.

Одна из плоскостей проекций располагается горизонтально, обозначается П1 и называется горизонтальной плоскостью проекций.

2-я плоскость располагается вертикально перед наблюдателем, обозначается П2фронтальная плоскость проекций. Прямая пересечения плоскостей – ось проекций.

А1 – горизонтальная проекция А2 – фронтальная проекция

hА – высота точки А

fА – глубина т.А

 

 

Спроецируем ортогонально на плоскости проекций П1 и П2 какую-нибудь

точку А, тогда получим две её проекции: горизонтальную проекцию А1 на плос­кости П1 и фронтальную проекцию А2 на плоскости П2. Проецирующие прямые AA1 и АА2, при помощи которых точка А проецируется на плоскости проекций, определяют проецирующую плоскость A1AA2, перпендикулярную к обеим плоскостям проекций и к оси проекций X. Прямые AхA1 и АхА2, являющиеся проекциями проецирующей плоскости на плоскостях проекций П1 и П2, будут перпендикулярны к оси проекций X.

Обратно, каждая пара точек А1 и А2, соответственно принадлежащих плос­костям П1 и П2 и расположенных на перпендикулярах к оси X, восставленных из одной и той же точки Ах, определяют в пространстве единственную точку А. В са­мом деле, если провести через точку A1 и А2 перпендикуляры А1А и А2А соответ­ственно к плоскостям П1 и П2, то они, находясь в одной плоскости А1АхА2, пере­секутся в некоторой точке А. Расстояние A1А точки А от горизонтальной плоскос­ти проекций называется высотой h точки А, ее расстояние А2А от фронтальной плоскости проекций – глубиной f точки А.

Чтобы получить плоский чертеж, совместим плоскость проекций П1 с плос­костью П2, вращая переднюю полуплоскость П1 вокруг оси Х вниз. В результате получим комплексный чертеж точки А (рис. 4), состоящий из двух проекций А1 и А2 точки А, лежащих на одной прямой, перпендикулярной к оси X. Прямая А1А2, соединяющая две проекции точки, называется вертикальной линией связи.

Полученный комплексный чертеж будет обратимым, т.е. по нему можно вос­становить оригинал. В самом деле, рассматривая, например, фронтальную проек­цию А2 точки А и имея на чертеже ее глубину f=АхА1, можно построить точку А. Для этого надо восстановить перпендикуляр к плоскости чертежа в его точке А2 и от плоскости чертежа отложить глубину искомой точки, тогда конец перпендику­ляра определит положение точки А.

На практике часто бывает безразличным положение изображаемой фигуры относительно неподвижной системы плоскостей проекций, поэтому при образова­нии комплексного чертежа можно отказаться от фиксации плоскостей проекций и оси проекций не изображать. Основанием этому может служить отмеченное шестое свойство параллельной проекции не изменять проекции фигуры при параллельном переносе плоскости проекций.

Плоскости проекций П1 и П2 разбивают все пространство на четыре части, называемые квадрантами или четвертями. При этом условимся нумеровать квад­ранты в порядке, указанном на рис., и называть их I, II, III и IV квадрантами.

Рис. 5 Двухкартинный комплексный чертёж  

Если точка А лежит в I квадранте, то ее горизонтальная проекция A1 будет принадлежать передней полуплоскости П1, а фронтальная проекция А2 - верхней полуплоскости П2. При совмещении плоскостей проекций горизонтальная проек­ция A1 точки А окажется расположенной ниже оси Х12, а фронтальная проекция А2 - выше оси Х12 (рис. 5). В зависимости от положения точек в различных квад­рантах пространства будем иметь соответствующее расположение их проекций на комплексном чертеже (рис. 5), так же как и обратно: по расположению проекций можно судить о том, в каком квадранте лежит точка.

Итак, комплексный чертеж, состоящий из двух ортогональных проекций (на­зываемый еще двухкартинным чертежом), является обратимым чертежом. Однако реконструкция оригинала часто становится проще, когда помимо двух основных проекций имеется еще одна проекция на третью плоскость. В качестве такой плос­кости проекций применяется плоскость, перпендикулярная к обеим основным плоскостям П1 и П2, которая называется профильной плоскостью проекций. Ее обозначают П3. Три плоскости проекций П1, П2 и П3 образуют систему трех взаимно перпендикулярных плоскостей (рис. 6). Ребра полученного трехгранника будем обозначать через X, У, Z.

Рис. 6

П3 – профильная плоскость проекций А3 – профильная проекция т.А рА – широта т.А   трёхкартинный комплексный чертёж т.А

 

Рассмотрим построение трехкартинного комплексного чертежа. Пусть А - некоторая точка пространства. Опустим из точки А перпендикуляры на плоскости проекций П1, П2 и П3: ААii (i = 1, 2, 3). Основания этих перпендикуляров (точ­ки А1, А2, А3) и являются соответственно горизонтальной, фронтальной и про­фильной проекциями точки А в системе плоскостей проекций П1, П2 и П3. Заметим при этом, что проецирующие плоскости AA1A2, AA1A3 и АА2А3 перпендикулярны соответственно осям X, У, Z. Обозначив точки пересечения этих плоскостей с осями через А12, А13, А23, заметим, что как прямые A1A12 и А12А2 перпендикулярны к оси X, так и две другие пары прямых A1A13, А13А3 и А2А23, А23А3 должны быть перпендикулярны соответственно осям Y и Z. Расстояние точки А от горизонтальной плоскости проекций П1 мы назвали ранее высотой точки А, а расстояние точки А от фронтальной плоскости проекций П2 - ее глубиной; расстояние точки А от профильной плоскости проекций П3 будем называть широтой точки А.

При построении плоского чертежа плоскость П2 считается неподвижной, а остальные плоскости П1 и П3 совмещаются с ней путем вращения соответственно вокруг осей Х и Z в направлении, указанном на рис. стрелками. После совме­щения плоскости П1 с фронтальной плоскостью П2 отрезки А1А1212 и A12A2^X12 окажутся расположенными на одной прямой. Аналогично после со­вмещения плоскости П3 с плоскостью П2 отрезки A2A23^Z23 и А23А3^Z23 распо­ложатся на линии связи А2А3^Z23.

В результате указанного совмещения плоскостей проекций получаем комп­лексный чертеж точки А, состоящий из трех ортогональных проекций (трехкартинный). При этом линии связи должны быть перпендикулярны к осям: А1А212, А2А3^Z23, а отрезки А1А12 и А23А3 равны, ибо А1А12 = А23А3 2А есть глубина точки А.

Рассмотрим, какой линией связи можно соединять горизонтальную и про­фильную проекции точки А. Для этого обратим внимание на квадрат А13ОА3А*. Диагональ этого квадрата является биссектрисой угла Х12ОZ23. Следо­вательно, линия связи, соединяющая проекции А1 и А3, представляет собой лома­ную линию с вершиной на биссектрисе угла Х12ОZ23, состоящую из двух звеньев (горизонтального и вертикального). В дальнейшем эту линию будем называть горизонтально-вертикальной линией связи. Часть этой ломаной заменяют иногда дугой окружности.

Введенная система трех плоскостей проекций П1, П2 и П3 разбивает все про­странство на восемь частей, называемых октантами. Их нумеруют следующим об­разом: слева от профильной плоскости октанты сохраняют нумерацию квадрантов, а справа от плоскости П3 идут номера 5, 6, 7 и 8. При совмещении плоскостей про­екций передняя часть горизонтальной плоскости опускается вниз, а задняя подни­мается вверх; передняя часть профильной плоскости удаляется от нас направо, а задняя приближается слева.

Множество горизонтальных проекций всех точек пространства назовем по­лем горизонтальных проекций П1 (соответствующая проекция фигуры называется видом сверху), а множество фронтальных проекций всех точек пространства - по­лем фронтальных проекций П2 (соответствующая проекция фигуры называется ви­дом спереди или главным видом). Аналогично множество профильных проекций всех точек пространства назовем полем профильных проекций П3 (соответствующая проекция фигуры называется видом слева).

Чтобы иметь возможность точного построения комплексных чертежей каких-либо фигур, необходимо уметь задавать положения проекций точек, определяющих данные фигуры, при помощи чисел. Для этого, как известно, следует пользоваться координатным методом. Рассмотрим трехгранник, образованный системой плоскостей проекций П1, П2 и П3. На осях X, У, Z установим единицу измерения е. За начало отсчета примем точку О пересечения трех плоскостей проекций (вершину трехгранника). Положительное направление на каждой оси установим, как показано на рис. Тогда трехгранник OXYZ можем рассматривать как прямоугольную декартову систему координат с коорди­натными осями: Ох - ось абсцисс, Оу - ось ординат, Oz - ось аппликат.

Ломаная ОА12А1А, определяющая положение точки А относительно коор­динатной системы OXYZ, называется, как, уже было сказано ранее, координатной ломаной линией. Звенья этой ломаной называются отрезками координат: ОА - отрезок абсциссы, А12А1 - отрезок ординаты, А1А - отрезок аппликаты точки А. Длины отрезков координат точки А, измеренные установленной единицей длины е, называются координатами точки А:

Координаты точки А можно рассматривать, как ее расстояния до плос­костей проекций, поэтому координаты будут иметь следующие значения: ZА - высота, YA - глубина, ХA - широта точки А. Координаты точки называются определителем точки.

По заданным координатам точку А(ХА,YA,ZA) можно построить сле­дующим образом. Сначала с помощью единицы длины е строится отрезок OA12, затем отрезок A12A1, параллельный оси Y, и, наконец, отрезок А1А, параллельный оси Z. В результате получаем точку А.

6. Комплексный чертёж прямой линии

Пусть в I четверти расположен отрезок прямой l не параллельный и не перпендикулярный ни к одной из плоскостей проекций. Для построения его ортогональных проекций возьмём на прямой 2 точки и спроецируем их на П1 и П2. Полученные проекции точек и определяют искомые проекции отрезка прямой.

Прямая, не параллельная и не перпендикулярная ни к одной из плоскостей проекций, называется прямой общего положения.

К прямым частного положения относятся параллельные или ^-ые какой-либо плоскости проекций.

Прямая, //-ая какой-либо плоскости проекций, называется прямой уровня.

//-ая П1 – горизонталь,

//-ая П2 – фронталь,

//-ая П3 – профильная прямая уровня.

Прямая уровня на плоскость проекций, которой она параллельна, проецируется без искажений в натуральную величину. При этом её проекция на этой плоскости с осями координат образует углы, равные углам наклона этой прямой к соответствующим плоскостям проекций.

Для задания профильной прямой уровня необходимо задавать на ней проекции двух точек.

Прямая, ^-я какой-либо плоскости проекций, называется проецирующей прямой.

^-я к П1 – горизонтально проецирующая,

^-я к П2 – фронтально проецирующая,

^-я к П3 – профильно проецирующая.

2 точки, проекции которых на какую-либо плоскость проекций совпадают, называются конкурирующие точки.

Если совпадают горизонтальные проекции – горизонтально конкурирующие.

Из двух горизонтально конкурирующих точек на П1 будет видна та, фронтальная проекция которой находится выше от оси х12.

Из двух фронтально конкурирующих точек на П2 будет видна та, горизонтальная проекция которой находится дальше от оси х12.

7. Определение натуральной величины отрезка прямой

Натуральная величина отрезка прямой является гипотенузой прямоугольного треугольника одним катетом которого служит проекция отрезка на какую-либо плоскость проекций, а другим катетом разность расстояний концов этого отрезка до этой плоскости проекций.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: