Разработка структуры усилителя




План

 

Введение

1. Разработка структуры усилителя

2. Разработка и расчет оконечного каскада усилителя мощности

2.1. Выбор первой пары транзисторов

2.1.1. Построение нагрузочной прямой в режиме В

2.1.2. Построение мощностных характеристик

2.1.3. Построение нагрузочной прямой в режиме АВ

2.2. Выбор второй пары транзисторов

2.2.1. Построение нагрузочной прямой в режиме В

2.2.2. Построение нагрузочной прямой в режиме АВ

2.3. Расчет напряжения смещения

2.4. Нелинейные искажения

3. Разработка и расчет предоконечного каскада

3.1. Выбор типа транзистора

3.2. Построение нагрузочных прямых

4. Разработка и расчет промежуточного каскада

4.1. Выбор операционного усилителя

4.2. Расчет масштабирующего усилителя с инвертированием сигнала

5. Разработка и расчет входного каскада

5.1. Выбор операционного усилителя

5.2. Расчет масштабирующего усилителя без инвертирования сигнала

6. Разработка и расчет блока питания

7. Разработка и описание печатной платы.

Заключение

Список использованной литературы


Введение

 

Несмотря на быстрое развитие усилительной техники, бестрансформаторные усилители мощности по-прежнему играют важную роль.

Такие усилители могут быть легко выполнены по интегральной технологии. Именно поэтому современные БМУ представляют собой компактные и экономичные устройства. Кроме того, отсутствие частотно-зависимых элементов в цепях связи позволяет вводить глубокие отрицательные обратные связи не только по переменному, но и по постоянному току, что существенно улучшает характеристики усилителей.

Основной функцией усилителей мощности (УМ) является обеспечение в нагрузке заданного значения мощности; усиление по напряжению является второстепенным фактором, в результате УМ являются основными потребителями энергии источников питания. Для обеспечения высокого КПД мощные выходные каскады работают в режиме класса В или АВ. Схемы строят двухтактными на транзисторах различного типа проводимости (комплементарных), включенных по схеме с ОК или с ОЭ.

Исходные данные:

- мощность, отдаваемая в нагрузку ;

- сопротивление нагрузки ;

- внутреннее сопротивление источника сигнала ;

- диапазон усиливаемых частот ;

- коэффициент частотных искажений ;

- коэффициент гармоник ;


Разработка структуры усилителя

 

Усиление – это процесс увеличения электрических сигналов колебаний с сохранением их частотного спектра и фазовых соотношений. В настоящее время усилители электрических сигналов применяются практически в любых электронных устройствах, таких как: устройства воспроизведения и записи информации, устройства автоматики, измерительные устройства, вычислительная техника и т.д.

 

Нагрузка
Усилитель
Источник сигнала
Р1 Р2

           
   
 
   


Ро

 
 
Источник питания

 


Рисунок 1 - Общая схема усилителя.

 

Процесс усиления электрического сигнала происходит за счет мощности, потребляемой от источника питания. Часть мощности Ро в усилителе преобразуется в мощность Р2, т.е. в мощность, выделяемую в нагрузке. Для преобразования мощности Ро в мощность Р2 затрачивается мощность Р1, т.е. мощность источника сигнала. Таким образом, усиление – процесс увеличения мощности источника сигнала.

В этом данном курсовом проекте проектируется устройство, структурная схема которого изображена на Рисунке 2.


 
 

 

 


На-грузка
Оконеч-ный каскад
Пред-оконечный каскад
Входной каскад
Каскад предваритель-ного усиления

           
     

 


Цепь смеще-ния
Цепь смещения
Цепь смеще-ния
Евх

           
     

 


Рисунок 2 - Структурная схема проектируемого усилителя.

 




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: