Основы разработки и программирования простейших USB-устройств




 

Шина USB (Universal Serial Bus – универсальная последовательная шина) появилась 15 января 1996 года при утверждении первого варианта стандарта фирмами – Intel, DEC, IBM, NEC, Northen Telecom и Compaq.

Основная цель стандарта, поставленная перед его разработчиками – создать возможность пользователям работать в режиме Plug&Play с периферийными устройствами. Это означает, что должно быть предусмотрено подключение устройства к работающему компьютеру, автоматическое распознавание его немедленно после подключения и последующей установки соответствующих драйверов. Кроме этого, желательно питание маломощных устройств подавать с самой шины. Скорость шины должна быть достаточной для подавляющего большинства периферийных устройств. Контроллер USB должен занимать только одно прерывание независимо от количества подключенных к шине устройств, то есть решить проблему нехватки ресурсов на внутренних шинах IBM PC совместимого компьютера.

Практически все поставленные задачи были решены в стандарте на USB и весной 1997 года стали появляться компьютеры, оборудованные разъемами для подключения USB устройств. Сейчас USB стала настолько активно внедряться производителями компьютерной периферии, что, например, в компьютере iMAC фирмы Apple Computers присутствует только USB в качестве внешней шины.

Возможности USB 1.0 следующие:

1. высокая скорость обмена данными (full-speed) – 12 Мб ит /с;

2. максимальная длина кабеля для высокой скорости обмена – 5 метров;

3. низкая скорость обмена данными (low-speed) – 1,5 Мб ит /с;

4. максимальная длина кабеля для низкой скорости обмена – 3 метра;

5. максимальное количество подключенных устройств – 127;

6. возможное одновременное подключение устройств с различными скоростями обмена;

7. напряжение питания для периферийных устройств – 5 В;

8. максимальный ток потребления на одно устройство – 500 мА.

Поэтому целесообразно подключать к USB 1.0 практически любые периферийные устройства, кроме цифровых видеокамер и высокоскоростных жестких дисков. Особенно удобен этот интерфейс для подключения часто подключаемых/отключаемых приборов, таких как цифровые фотокамеры.
Возможность использования только двух скоростей обмена данными ограничивает применяемость шины, но существенно уменьшает количество линий интерфейса и упрощает аппаратную реализацию.
Питание непосредственно от USB возможно только для устройств с малым потреблением, таких как клавиатуры, мыши, джойстики и т.п.

Сигналы USB передаются по 4-х проводному кабелю, схематично показанному на рисунке ниже:

Рисунок 2.6.1 – Сигнальные провода USB

Здесь GND – цепь общего провода для питания периферийных устройств, Vbus - +5 В также для цепей питания. Шина D+ предназначена для передачи данных по шине, а шина D- для приема данных.
Кабель для поддержки полной скорости шины (full-speed) выполняется как витая пара, защищается экраном и может также использоваться для работы в режиме минимальной скорости (low-speed). Кабель для работы только на минимальной скорости (например, для подключения мыши) может быть любым и неэкранированным.
Разъемы, используемые для подключения периферийных устройств, делятся на серии: разъемы серии «A» (вилка и розетка) предназначены только для подключения к источнику, например, компьютеру, разъемы серии «B» (вилка и розетка) только для подключения к периферийному устройству.

USB разъемы имеют следующую нумерацию контактов, показанную в таблице 2.6.1.

Таблица 2.6.1 – Назначение и маркировка контактов USB

Номер контакта Назначение Цвет провода
  V BUS Красный
  D - Белый
  D + Зеленый
  GND Черный
Оплетка Экранирование сигналов Металлическая оплетка

 

В 1999 году тот же консорциум компьютерных компаний, который инициировал разработку первой версии стандарта на шину USB, начал активно разрабатывать версию 2.0 USB, которая отличается введением дополнительного высокоскоростного (Hi-speed) режима. Полоса пропускания шины увеличена в 40 раз, до 480 Мбит/с, что сделало возможным передачу видеоданных по USB.
Совместимость всей ранее выпущенной периферии и высокоскоростных кабелей полностью сохраняется. Контроллер стандарта 2.0 уже интегрирован в набор системной логики программируемых устройств (например, материнская плата персонального компьютера).

В 2008 году компаниями Intel, Microsoft, Hewlett-Packard, Texas Instruments, NEC и NXP Semiconductors создана спецификация стандарта USB 3.0. В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта физически и функционально совместимы с USB 2.0, однако в дополнение к четырем линиям связи, добавлены ещё четыре. Тем не менее, новые контакты в разъёмах USB 3.0 расположены отдельно от старых на другом контактном ряду. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 5 Гбит/с — что на порядок больше 480 Мбит/с, которые может обеспечить USB 2.0. Кроме того, увеличена максимальная сила тока с 500 мА до 900 мА на одно устройство, что позволяет питать некоторые устройства, требующие ранее отдельного блока питания.

Предположим, разработано устройство USB, с которым необходимо работать с помощью компьютера. Этого можно достигнуть минимум двумя способами:

1. разработка полнофункционального драйвера операционной системы;

2. использования интерфейса специального класса USB – устройств, называемых HID (Human Interface Device) устройствами.

Первый способ универсален: владея достаточными познаниями в области написания драйверов, можно запрограммировать работу с любым устройством на любой скорости, поддерживаемой USB. Но это достаточно непростая задача.

Второй способ заключается в следующем. Существует поддерживаемый современными операционными системами интерфейс для устройств взаимодействия компьютера и человека или HID-устройств, таких как:

1. клавиатуры, мыши, джойстики;

2. различные датчики и считыватели;

3. игровые рулевое управление и педали;

4. кнопки, переключатели, регуляторы.

Любое такое устройство, если оно выполняет требования к HID-устройствам, будет автоматически распознано системой и не потребует написания специальных драйверов. Кроме того, их программирование, как правило, намного проще написания специализированного драйвера устройства. К сожалению, способ имеет существенный недостаток: скорость обмена информации с HID-устройством сильно ограничена и составляет максимум 64 кБ/с.

Принципиально на основе HID-технологии можно организовать взаимодействие с любым устройством, даже если оно не является в строгом смысле интерфейсным устройством человека и компьютера. Это позволяет отказаться от трудоемкой разработки уникального драйвера устройства и сэкономить время на разработку нового USB-устройства. На стороне хоста обменом с устройством будет руководить стандартный HID-драйвер, включенный в поставку операционной системы. Нужно лишь выполнить со стороны устройства минимальные требования USB-HID протокола.

Стоит отметить что, многие USB-приборы, с первого взгляда не попадающие под определение устройств взаимодействия с человеком, логичнее все же реализовать как HID-устройства. Такое явление часто встречается в области производственного оборудования, которая последнее время переживает массовое внедрение USB-технологий. К примеру, рассмотрим лабораторный источник питания с возможностью задания параметров его выходных сигналов с компьютера с помощью USB-интерфейса. Непосредственно источник питания без сомнений не является средством взаимодействия с человеком. Однако, в данном случае функции, реализуемые посредством USB-подключения, дублируют клавиатуру, регуляторы и индикаторы, установленные на самом приборе. А эти органы управления как раз попадают под определение HID. Соответственно блок питания с этими USB-функциями логичнее всего организовать как HID-устройство.

В рассмотренном примере для нормальной работы достаточно будет небольшой скорости передачи данных, в других же случаях приборы могут быть весьма требовательны к скорости обмена. Низкая скорость передачи является главным ограничением HID-варианта построения устройства, что в сравнении с 12 Мбит/сек полной скорости USB 1.0-шины выглядит большим минусом HID-технологии в вопросе выбора конкретной USB-реализации. Однако для многих задач коммуникации указанной скорости вполне хватает и HID-архитектура как специализированный инструмент занимает достойное место среди способов организации обмена данными.

HID-устройства бывают двух типов: участвующие (загрузочные) и неучаствующие в начальной загрузке компьютера. Наиболее ярким примером загрузочного USB-HID устройства является клавиатура, работа которой начинается со стартом компьютера.

При разработке HID-устройства необходимо обеспечить следующие требования, налагаемые спецификацией:

1. полноскоростное HID-устройство может передавать 64000 байт каждую секунду или по 64 байта каждые 1 мс; низкоскоростное HID-устройство имеет возможность передать вплоть до 800 байт в секунду или по 8 байт каждые 10 мс.

2. HID-устройство может назначить частоту своего опроса для определения того, есть ли у него свежие данные для передачи.

3. Обмен данными с HID-устройством осуществляется посредством специальной структуры, называемой репортом (Report). Каждый определенный репорт может содержать до 65535 байт данных. Структура репорта имеет весьма гибкую организацию, позволяющую описать любой формат передачи данных. Для того чтобы конкретный формат репорта стал известен хосту микроконтроллер должен содержать специальное описание – дескриптор репорта.

Реализуется USB взаимодействие непосредственно на микроконтроллере несколькими способами:

1. использованием контроллера с аппаратной поддержкой, например AT90USB*, фирмы atmega;

2. использованием программной эмуляции usb-интерфейса на любом микроконтроллере.

Для программной реализации в настоящее время существует ряд готовых решения под различные семейства микроконтроллеров. Для AVR микроконтроллеров, например, Atmega8 возможно использовать следующие свободные библиотеки на языке Си:

1. V-USB;

2. USBtiny.

Обе достаточно простые в использовании, обеспечивают полную эмуляция USB 1.1 low-speed устройств за исключением обработки ошибок связи и электрических характеристик и запускаются практически на всех AVR контроллерах с минимум 2 килобайтами flash-памяти, 128 байтами RAM и частотой от 12 до 20 МГц.

Для написания приложений с поддержкой Windows USB HID устройств требуются заголовочные файлы hid*, входящие в состав WDK (Windows Driver Kit), или можно использовать свободно-распространяемую библиотеку hidlibrary или другую аналогичную.

Таким образом, в общем случае программирование USB достаточно сложная задача, требующая специального микроконтроллера с аппаратной поддержкой и написания драйвера операционной системы. Однако в практике при разработке устройств можно использовать значительно более просто интерфейс HID – устройств, поддержка которого реализована на уровне стандартного драйвера системы, а программирование упрощается использованием существующих библиотек функций.

 

Контрольные вопросы

 

  1. В чем отличие провода D- и GND в USB? Почему нельзя использовать один общий провод для питания и сигнала?
  2. Сколько режимов скорости работы USB существует на сегодняшний день (включая версию 3.0)?
  3. Что такое HID-устройство? Почему для их работы в современных ОС не требуется написание драйверов?
  4. Можно ли реалировать USB устройства с помощью микропроцессора, неимеющего встроенной поддержки интерфейса?
  5. Какие основные отличия USB 3.0 от предыдущих версий?

 


Заключение

 

В состав современных электронных устройств зачастую входят программируемые элементы – микропроцессоры. Функционирование таких устройств зачастую определяется не только схемотехническим решением, но значительно алгоритмами, заложенными в микропроцессоры. С течением времени быстродействие процессоров, использующихся в бытовой и промышленной электронике сравнимо, а зачастую и превосходит, с быстродействием процессоров, использовавшихся в персональных компьютерах несколько лет назад. Стоимость микросхем с низким энергопотреблением, например, многоядерных процессоров ARM архитектуры работающих на частотах до 1,2 ГГц и более, постоянно снижается. С одной стороны это позволит разрабатывать более сложные электронные устройства, чем существуют в настоящее время, с другой повысит требования к рациональному использованию вычислительных ресурсов. Эффективное программирование таких быстродействующих устройств невозможно без многократного использования отлаженного существующего кода – операционных систем, библиотек функций, драйверов. Это приводит к необходимости понимания принципов унификации в программирования, стиля программирования, изучения существующих приемов и подходов, различных концепций используемых в современном программном обеспечении. Рассмотрение именно таких общих подходов (событийно-управляемое программирование, абстрагирование от аппатуры, многоуровневые системы, концепция измерений, визуальное программирование и т.д.) ставилось основной задачей на фоне многочисленных прикладных примеров при написании данного пособия, которая, надеемся, успешно выполнена.

 


Учебное издание

 

Евгений Сергеевич Глибин

Алексей Вадимович Прядилов

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: