Список использованных источников. Хорошо известно, что высший аналог второго уравнения Пенлеве [5]




Основная часть

 

Хорошо известно, что высший аналог второго уравнения Пенлеве [5]

 

 

имеет преобразование Беклунда и обратное к нему, определяемые формулами

 

, (1)

, (2)

 

соответственно с произвольным параметром .

Это означает, что если известно решение уравнения

 

(3)

 

при некотором фиксированном значении параметра , то формула (2) позволяет получить решение уравнения при фиксированном значении параметра .

И наоборот, если известно решение уравнения при фиксированном значении параметра , то с помощью (1) можно получить решение уравнения (3).

При этом предполагается, что знаменатели дробей в (1) и (2) при любых значениях z отличны от нуля.

Система (1), (2) эквивалентна по уравнению:

 

, (4)

 

где

 

 

Относительно система (1), (2) также эквивалентна уравнению шестого порядка

 

, (5)

 

где

 

 

Нетрудно проверить, что уравнение (5) получается из (4) с помощью преобразований , .

Справедливо следующее утверждение.

Теорема 1. Все решения уравнения являются одновременно решениями уравнения (4).

В справедливости данной теоремы можно убедиться, если из найти , и вместе с подставить в уравнение (4).

Остановимся на некоторых свойствах решений уравнения . Лемма. Уравнение можно записать в виде системы

 

(6)

 

Справедливость этого утверждения устанавливается исключением из системы (6).

Заметим, что из (6) также следует существование трёхпараметрического семейства решений уравнения при , которое определяется общим решением уравнения

 

(7)

 

Действительно, если в (6) положить , , то мы получаем уравнение (7).

Для интегрирования уравнения (7) введём функцию . Тогда и система (6) перепишется в виде

 

(8)

 

а уравнение (7) - в виде

 

. (9)

 

Ясно, что уравнение (9) интегрируется посредством первого трансцендентна Пенлеве заменой , , где , . Таким образом, справедлива [5]

Теорема 2. Произвольное решение уравнения Риккати , где q - произвольное решение первого уравнения Пенлеве, является решением уравнения .

Известно также [5], что уравнение имеет рациональные решения тогда и только тогда, когда . Они легко получаются из тривиального решения при с помощью формул (1), (2). В частности, при имеем решение , а при решение .

Характерной особенностью уравнения является то, что оно является частным случаем уравнения

 

,

где , , ,

 

получающегося из высшей иерархии Кортевега де Фриза

 

, (10)

где , ,

 

при помощи редукции

 

, .

 

При уравнения и (10) являются [6] классическими уравнениями Кортевега де Фриза и вторым уравнением Пенлеве связанными преобразованием

 

, .

 

Для в получаем уравнение . Ещё одной важной особенностью уравнения является то, что оно имеет трёхпараметрические и двухпараметрические семейства полярных решений [7]. В силу теоремы 1 таким же свойством обладает и уравнение (5).

Подробное описание различных свойств решений уравнения в связи с их многочисленными приложениями содержится в учебном пособии [8].


Заключение

 

Исследование аналитических свойств решений системы двух нелинейных дифференциальных уравнений третьего порядка, порождаемой прямым и обратным преобразованиями Беклунда высшего аналога второго уравнения Пенлеве позволило доказать существование у неё четырёхпараметрического семейства решений, порождаемого общим решением высшего аналога второго уравнения Пенлеве. На основании этого доказано существование у системы рациональных, а также двух - и трёхпараметрических семейств полярных решений. Работа (в рамках поставленной задачи) является завершённой.

В процессе исследований использовался пакет символьных вычислений МАТЕМАТИКА.


Список использованных источников

 

1. Абловиц М., Сигур Х. Солитоны и метод обратной задачи. - М.: Мир. 1987. - 479 с.

2. Ньюэлл А. Солитоны в математике и физике. - М.: Мир. 1989. - 328 с.

3. Калоджеро Ф., Дегасперис А. Спектральные преобразования и солитоны. - М.: Мир. 1985. - 472 с.

4. Баренблатт Г.И. Подобие, автомодельность, промежуточная асимптотика. - Л.: 1982. - 255 с.

5. Gromak V.I. Backlund transformations of Painleve’ equations and their applications // The Painleve’ property, one century later. CRM series in Mathematical Physics /. Ed. R. Conte. - New York: Springer-Verlag, 1999. - P.687-734.

6. Airault H. Rational solutions of Painleve’ equations // Stud. Appl. Math. - 1979. - Vol.61. - P.31-53.

7. Громак В.И., Голубева Л.Л. Обобщённое второе управление Пенлеве четвертого порядка // Весцi НАН Беларусi. Серыя фiз. - мат. Навук. - 2004 (в печати).

8. Кудряшов Н.А. Аналитическая теория нелинейных дифференциальных уравнений. - М. 2002. - 304 с.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: