Линии давлений и устойчивость стен




 

 

Внушает трепет и благоговенье

Весь облик этой каменной громады.

Уходят в небо древние колонны,

Главами мраморными подпирая

Изогнутый дугою тяжкий свод.

Недвижно все, покоем дышит камень

И, ужасая, привлекает взор.

 

Утренний мост

Уильям Конгрив

 

Во времена королевы Анны культурная жизнь Англии не могла быть особенно разрозненной и можно быть почти уверенным в том, что Конгрив (1670-1729) имел беседы и делил застолье с Ванбруфом, автором многочисленных пьес и создателем Бленхеймского дворца, а также с самим Кристофером Реном. Для этих людей в общих чертах было совершенно ясно, что устойчивость зданий определяет не столько прочность камня и скрепляющего "раствора", сколько распределение их веса.

Однако одно дело понимать это и совсем другое - конкретно представлять себе все в деталях и уметь определить заранее, будет ли здание безопасным или нет. Чтобы достичь научного понимания того, как ведет себя каменная кладка, ее необходимо рассматривать как упругий материал, то есть следует учесть то обстоятельство, что материал камня деформируется под действием нагрузки и что он подчиняется закону Гука. Полезно также, хотя это и не абсолютно необходимо, использовать понятия напряжения и деформации.

На первый взгляд все же, конечно, кажется невероятным, что твердый кирпич и камень могут деформироваться в сколько-нибудь заметной степени под действием нагрузки, создаваемой зданием. И в самом деле, еще столетие после Гука к этой мысли не могли привыкнуть даже строители, архитекторы и инженеры. Они упорно игнорировали закон Гука и считали каменную кладку абсолютно жесткой. В результате их расчеты оказывались неверными и здания иногда рушились.

Однако в действительности модуль Юнга для кирпича и камня не очень велик (в этом можно убедиться, посмотрев на изогнутые колонны собора в Солсбери на рис. 4), а потому упругие перемещения каменной кладки отнюдь не так малы, как можно было бы предполагать. Даже стены обычного небольшого дома сжаты в вертикальном направлении своим собственным весом примерно на миллиметр. В больших зданиях эти перемещения, естественно, значительно больше. А когда вам кажется, что дом сотрясается под порывами сильного ветра, это не так далеко от истины. Верхушка небоскреба Эмпайр стэйт билдинг раскачивается при сильном ветре более чем на 0,5 м[62].

Современный расчет каменной кладки основан на простом законе Гука, а также на следующих четырех допущениях, которые оказываются справедливыми на практике:

1) сжимающие напряжения столь малы, что материал не может разрушаться за счет сжатия (мы уже обсуждали этот вопрос);

2) благодаря использованию строительного раствора или цемента соединения выполнены достаточно тщательно, так что силы сжатия действуют по всей площади соединения, а не в нескольких выступающих точках;

3) трение в соединениях столь велико, что не может произойти разрушения конструкции вследствие взаимного проскальзывания кирпичей или камней (на самом деле никаких проскальзываний до разрушения конструкции не происходит);

4) соединения не обладают сколько-нибудь заметной прочностью на растяжение; даже если случайным образом раствор обладает некоторой прочностью на разрыв, на нее нельзя полагаться и ею следует пренебречь.

Таким образом, назначение строительного раствора состоит не в том, чтобы "склеивать" кирпичи или камни, а в том, чтобы сжимающие нагрузки передавались через соединение более равномерно.

Насколько мне известно. Юнг был первым, кто стал учитывать упругие деформации каменной кладки. Он рассмотрел, что происходит в прямоугольном блоке каменной кладки, скажем в участке стены, когда он подвергается действию вертикальной сжимающей нагрузки Р. Мы приведем его рассуждения в упрощенной форме, переведя их для этого на язык напряжений и деформаций, которого во времена Юнга, конечно, не существовало.

До тех пор пока нагрузка P действует вертикально вниз в плоскости симметрии, то есть посредине стены, кладка будет сжата равномерно и, согласно Гуку, соответствующее распределение сжимающих напряжений по толщине стены также будет равномерным (рис. 58).

 

Рис. 58. Нагрузка P действует в плоскости симметрии стены.

Рис. 59. Нагрузка P действует в пределах "средней трети" стены.

 

Рис. 60. Нагрузка P действует на краю "средней трети" соединения AB.

Рис. 61. Нагрузка P действует вне "средней трети" соединения AB.

Предположим теперь, что вертикальная нагрузка P немного сместилась в сторону и действует не точно в плоскости симметрии стены. В этом случае сжимающее напряжение не будет постоянным вдоль ее сечения: для того чтобы в точности уравновесить действующую нагрузку, оно должно быть с одной стороны больше, чем с другой. Юнг показал, что если материал подчиняется закону Гука, то напряжения по толщине стены будут изменяться линейно и распределение напряжений будет выглядеть так, как показано на рис. 59.

Пока что соединению, которое мы видим на рис. 59, ничто не угрожает: по всему сечению АВ действуют только сжимающие напряжения. Однако если приложение нагрузки сместится еще дальше от середины стены - на границу так называемой "средней трети" стены, то возникнет ситуация, изображенная на рис. 60, в которой распределение напряжений имеет треугольную форму и сжимающее напряжение на одном из краев соединения обращается в нуль.

 

Рис. 62. Вот что происходит, если возникает ситуация, изображенная на рис. 61. В соединении возникает трещина ВС, и вся нагрузка теперь распределена по площади, соответствующей отрезку АС, - эффективная толщина стены уменьшается.

Рис. 63. Если линия действия нагрузки проходит за пределами отрезка АВ, то стена будет поворачиваться вокруг точки A, - опрокинется и упадет.

Само по себе это пока еще не опасно, но для вдумчивого человека вполне очевидно, что при этом что-то готово вот-вот произойти. И действительно, если нагрузка сместится еще немного к краю, "что-то" и в самом деле произойдет - возникнет ситуация, изображенная на рис. 61.

Сжимающее напряжение вблизи одной из поверхностей стены теперь сменилось на растягивающее. Здесь уже нельзя быть уверенным в том, что раствор сможет выдержать растягивающее напряжение. Обычно он и в самом деле не выдерживает и происходит то, чего и следовало ожидать, - в соединении возникает трещина. Конечно, если стена трескается, это плохо и этого лучше не допускать, однако такая трещина еще не означает, что стена непременно и без промедления рухнет. Весьма вероятно, что края трещины несколько разойдутся, но стена останется стоять, покоясь на той части соединения, где контакт не нарушен (рис. 62).

Но все это не сулит спокойной жизни, и наступит день, когда линия действия силы окажется за пределами стены, и нетрудно догадаться, что произойдет. В стене не может возникнуть необходимых растягивающих напряжений, ее часть начнет свисать над основанием, и тогда стена опрокинется и упадет (рис. 63).

В 1802 г., когда Юнг пришел к этим заключениям, он был двадцатидевятилетним человеком, начинающим приобретать известность и только что получившим кафедру натуральной философии в Королевском институте в Лондоне. Его коллегой и в определенном смысле соперником был Гемфри Дэви[63], который в том же году, в невероятно молодом возрасте - ему было 24 года, - стал там же профессором химии.

Как и сегодня, в те времена существовала традиция, согласно которой профессора Королевского института читали публичные лекции. Правда, в то время эти лекции по своему характеру были близки к сегодняшним выступлениям по телевидению и для института служили источником денежных средств, а также создавали ему паблисити.

Юнг отнесся к своей просветительской миссии весьма серьезно и, полный энтузиазма, затеял серию лекций об упругом поведении разного рода конструкций, в том числе стен и арок, которым он посвятил свои последние исследования.

Публика на этих собраниях на Албемарл-стрит была фешенебельной и, как говорят, состояла главным образом из "глупых женщин и философствующих дилетантов". Юнг отнюдь не пренебрег женской частью аудитории, заметив в своей вводной лекции:

 

"Значительную часть моей аудитории - и я горю желанием донести до нее эти лекции - составляют лица того пола, который, согласно традициям цивилизованного общества, в известной степени избавлен от тяжелых обязанностей, поглощающих время и внимание лиц противоположного пола. Те многие часы досуга, которыми располагают женщины высших слоев общества, можно посвятить совершенствованию ума и приобретению знаний, и это несомненно принесло бы большее удовлетворение, чем развлечения, придуманные лишь для того, чтобы немного скрасить однообразие ничем не занятого времени".

 

Однако фортуна не всегда благосклонна к сеятелям знаний, и можно подозревать, что некоторые из представительниц прекрасного пола все же сбежали с этих лекций, отдав предпочтение однообразию "ничем не занятого времени". Так или иначе, но Дэви, демонстрировавший на своих лекциях необыкновенно захватывающие опыты с "новой электрической жидкостью" и яркие химические эксперименты, был, как мы бы сейчас сказали, прямо-таки создан для экрана. Этот энергичный молодой человек имел к тому же весьма привлекательную внешность, так что молодые дамы стекались на его лекции по причинам, которые нельзя назвать вполне академическими, Одна из них, говорят, заметила, что "эти глаза созданы не только для того, чтобы сосредоточенно разглядывать пробирки". В итоге кассовый успех лекций Дэви превзошел все ожидания, и администрация резюмировала: "Хотя д-р Юнг, чьи глубокие познания в предмете, который он предложил своим слушателям, не вызывают сомнений, читал свои лекции той же аудитории, что и Дэви, число его слушателей уменьшалось раз от раза, чего нельзя объяснить ничем иным, кроме слишком сухой и назидательной манеры изложения".

Провал такого рода не много бы значил, вызови работа Юнга интерес и поддержку инженеров-практиков. Однако вождем и даже кумиром тогдашних инженеров был Томас Телфорд (1757-1834), взгляды которого, как мы уже упоминали, отличались прагматичностью и отвергали теорию. Все это способствовало тому, чтобы Юнг почти немедленно отказался от кафедры и вернулся к медицинской практике[64].

Развитие теории упругости на много лет переместилось во Францию, где как раз в это время Наполеон активно поощрял исследования в области конструкций.

Учение об упругом сжатии, "средней трети" и неустойчивости, которое вызывало такую скуку у фешенебельных дам на лекциях Юнга, в действительности содержит практически все, что нужно знать о поведении стыков в каменной кладке, при условии, что нам известна также линия действия силы веса. Другими словами, мы должны знать, на каком расстоянии от серединной плоскости стены на самом деле действует нагрузка.

 

Рис. 64. В простейшем случае, когда имеется симметрия, "линия давлений", проходит через середину стены.

Здесь как раз уместно ввести понятие "линии давлений", которая определяется как линия, проходящая по стене здания от ее верхней точки до основания и пересекающая все стыки в тех точках, где приложена равнодействующая вертикального давления. Линия давлений - это французское изобретение, и, по-видимому, первым ее рассматривал Кулон (1736-1806).

Для стены, колонны или опоры простых симметричных форм, таких, как показаны на рис. 64, линия давлений проходит, очевидно, через середину, и здесь нет никаких трудностей. Однако если речь идет о сколько-нибудь более сложном сооружении, то тогда скорее всего имеется хотя бы одна наклонная сила, возникающая из-за бокового давления крыши, арки, сводов или других конструктивных элементов. В таких случаях линия давлений уже не проходит точно через середину стены, а смещается на одну сторону и часто принимает искривленную форму, как показано на рис. 65[65].

 

Рис. 65. В результате действия наклонной нагрузки линия давлений отклоняется от плоскости симметрии стены.

Рис. 66. Действие на стену дополнительной вертикальной нагрузки уменьшает отклонение линии давлений от середины стены.

Если, проводя линию давлений, мы обнаружим, что имеется опасность того, что она в какой-либо точке достигнет поверхности стены, то следует призадуматься, и крепко, поскольку у сооружения, спроектированного таким образом, велики шансы рухнуть.

Один из способов исправить положение (и, вероятно, это один из наиболее эффективных способов) состоит в том, чтобы на верхнюю часть стены добавить дополнительный вес. Тогда дело обернется таким образом, как это показано на рис. 66. В противоположность тому, что можно было бы предположить, этот дополнительный вес способствует большей, а не меньшей, устойчивости стены и возвращает "заблудшую" линию давлений более или менее туда, где ей следует находиться.

Требуемый дополнительный вес можно создать, просто надстроив стену больше, чем в действительности необходимо; годятся также такие вещи, как тяжелые баллюстрады и парапеты. Всегда могут выручить и поставленные в ряд статуи (рис. 67), если, конечно, это совместимо с назначением здания и позволяют средства! С конструкционной точки зрения бывает обоснованным использование башенок и статуй в готических церквях и соборах. Они возвышаются там словно насмешка над приверженцами функциональности и унылыми ревнителями "эффективности".

Обычно считается абсолютно необходимым, чтобы линия давлений[66]проходила в пределах "средней трети" стены, поскольку иначе при появлении трещины она может обвалиться.

 

Рис. 67. Требуемую дополнительную вертикальную нагрузку могут создавать башенки, статуи и т. п.

Такой осторожный подход правилен, он служит безопасности, и его необходимо придерживаться, но я боюсь, что в наш век вседозволенности это делается редко. Посмотрите на стену современного жилого дома или нового учебного заведения, и вы увидите массу трещин, а там, где трещины, непременно действовали когда-то растягивающие напряжения. Правда, хотя эти трещины вредят штукатурке и внутренней отделке здания[67], на деле они редко представляют какую-либо опасность для несущей конструкции. Основным условием надежности каменной кладки является то, чтобы линия давлений нигде и никогда не подходила к поверхности стены, или колонны.

 

Плотины

 

Подобно стенам, каменные плотины обычно разрушаются не из-за недостатка прочности, а из-за недостатка устойчивости - они, как и стены, могут опрокидываться. Боковое давление на плотину со стороны запруженной воды, как правило, сравнимо с весом каменной кладки плотины. Поэтому положения активной линии давлений могут резко меняться в зависимости от уровня запруженной воды. Для плотин в отличие от обычных зданий недопустимы никакие вольности в обращении с правилом "средней трети". Их каменная кладка ни в коем случае не должна содержать трещин, особенно со стороны, обращенной к запруживаемой воде. Присутствие трещины позволило бы воде под давлением войти внутрь конструкции, что повлекло бы за собой два нежелательных последствия. Во-первых, вода повреждала бы каменную кладку. В больших плотинах для предотвращения всякого просачивания воды в тело плотин обычно предусматривается специальный дренаж. Во-вторых, давление воды внутри трещины создавало бы направленную вверх силу (ее величина на глубине 30 м составляет около 0,5 МН/м2), которая в критической ситуации опрокидывает дамбу.

Так, разрушение британской авиацией плотин Мопе и Эдер в 1943 г. происходило в две стадии, разделенные коротким промежутком времени. Вначале взорвались бомбы, сброшенные Барнсом Уоллисом возле плотины со стороны верхнего бьефа (прежде чем взорваться, они затонули). Взрывы бомб образовали в теле плотины глубокие трещины, а уже опрокидывание плотин произошло через некоторый промежуток времени и было вызвано проникновением в эти трещины воды, давление которой было достаточно велико. Те, кто читал отчет об этих операциях, помнят, что между взрывами бомб и видимым разрушением плотины была заметная пауза. Разрушения эти нанесли огромный ущерб районам Рура.

Разрушение плотины в мирное время - страшный сон для инженера. Даже если плотина сделана из неармированного бетона, а не из камня, было бы неразумным положиться на сопротивление материала плотины растягивающим нагрузкам. Поэтому во всех плотинах, построенных из неармированных материалов, линия давлений, смещаясь в сторону верхнего бьефа при незаполненном водохранилище и в противоположную сторону, когда водохранилище заполнено до предела, не должна выходить из "средней трети", и не лишне при этом иметь еще некоторый запас. Чтобы удовлетворить этим требованиям, обычно строят суживающиеся кверху плотины асимметричной формы. Эта форма хорошо известна, вы видите ее на рис. 68.

 

Рис. 68. Каменная плотина без армирования.

 

Рис. 69. Армированная плотина.

Однако стоимость удержания воды с помощью плотины весьма высока, и инженеры постоянно ищут более дешевые способы сооружения плотин. Заметно снизить общий вес плотины и стоимость цемента позволяет применение бетона, армированного стальными прутьями, в особенности предварительно натянутыми, Однако если армирующие прутья не закреплены в твердой породе под основанием плотины, имеется реальная опасность, что плотина будет опрокинута как целое, вместе с арматурой и всем прочим.

Одно из возможных конструктивных решений показано на рис. 69. Здесь простые вертикальные стальные стягивающие стержни закреплены в твердой породе, лежащей в основании плотины, и проходят через бетон до ее верха, где они натягиваются с помощью устройства типа домкрата. Очевидно, что эти прутья работают так же, как и фигуры святых и башенки на кафедральных соборах. Любую обычную тяжелую каменную кладку также можно рассматривать как "предварительно напряженную" ее собственным весом. Тяжелые статуи, поставленные в ряд по верхней кромке плотины, несомненно были бы эффективны и, возможно, не так уж плохо и выглядели бы, но, боюсь, они оказались бы куда как дороже стальных стержней.

 

Арки

 

Хотя арки не столь стары, как каменная кладка, тем не менее они тоже ведут свое начало из глубокой древности. Имеются свидетельства, восходящие примерно к 3600 г. до н.э., о существовании вполне совершенных арок из кирпича как в Египте, так и в Месопотамии. Арки из камня, по-видимому, имели отдельную и, возможно. независимую линию развития, возникающую из идеи об устройстве выступов; такие выступы, образованные выдававшимися все дальше последовательными рядами каменной кладки, строились навстречу друг другу, пока не сходились. Своды помещений (рис. 70), над которыми возвышаются крепостные стены микенского города Тиринфа, - уже тогда, когда ими восхищался Гомер, они были старыми, - построены именно таким образом. Боковые ворота в этих громадных стенах (рис. 71) можно рассматривать как пример дальнейшего развития техники устройства выступов. Все это, вероятно, было построено ранее 1800 г. до н. э.

 

Рис. 70. Своды, образуемые посредством выступов каменной кладки. Тиринф, приблизительно 1800 г. до н. э.

 

Рис. 71. Боковые ворота в крепостных стенах Тиринфа.

Однако способ устройства арок с помощью серии выступов, подобный примененному при строительстве ворот в Тиринфе, довольно примитивен[68]. Арки скоро развились в конструкцию, в которой кирпичи или камни имеют слегка клинообразную форму, такие камни носят название клинчатых. Детали обычной арки показаны на рис. 72.

Клинчатый камень на вершине, или шелыге, арки или свода называется замковым камнем, и иногда его делают большим, чем остальные. Хотя поэты, политики и представители гуманитарных наук склонны приписывать замковому камню особые свойства, употребляя его название в переносном смысле, в действительности замковый камень, если и имеет какие-либо отличия от других камней, то только декоративного характера.

 

Рис. 72. Элементы конструкции арки.

Назначение арочной конструкции состоит в том, чтобы выдерживать нагрузки, которые действуют на нее сверху вниз, преобразуя их в боковое давление, действующее вдоль арочного кольца и сжимающее по бокам клинчатые камни. Последние, конечно, в свою очередь давят на пяту арки. Как все это происходит, можно понять из рис. 73.

Кольцо арки, образованное кладкой из клинчатых камней, очень похоже на искривленную стену, и для нее также можно построить линию давлений, указывающую линии действия равнодействующих сил, как это делалось выше для обычных стен. В данном случае линия давлений должна искривляться, более или менее повторяя форму кольца арки. О линиях давлений в арках мы поговорим в следующей главе, пока же отметим сам факт существования линии давлений. Как и в случае стены, здесь также можно считать, что клинчатые камни не могут проскальзывать относительно друг друга и что соединения не способны выдерживать растягивающих напряжений.

 

Рис. 73. Распределение нагрузок в арке. Арка принимает на себя вертикальные нагрузки и преобразует их в боковые давления, которые действуют вдоль арочного кольца. Им оказывает противодействие пята арки.

Стыки между клинчатыми камнями ведут себя примерно так же, как и соединения в обычной кладке. Если линия давлений паче чаяния выйдет за пределы "средней трети", то появится трещина. Если же линия давлений сдвинется к поверхности кольца арки, то образуется "шарнир". Но что радикально отличает арку от тривиальной стены, так это то, что, в то время как в подобной ситуации стена бы рухнула, с аркой этого не происходит. Из рис. 74 видно, что в арке может возникнуть до трех шарниров, и при этом не происходит ничего страшного. В действительности в конструкциях многих современных мостов предусмотрены три шарнира, которые воспринимают тепловые расширения.

Чтобы мост обвалился, ему требуется четыре шарнира, тогда арка оказывается цепью из трех шарнирно связанных звеньев - механизмом, имеющим ту степень свободы, которая позволяет ему "складываться", то есть разрушаться (рис. 75). Кстати, поэтому, если вы хотите разрушить мост - из добрых или злых побуждений, - то взрывчатку лучше всего подложить в месте, отстоящем примерно на треть пролета арки. Для того чтобы добраться до верхней поверхности арки, обычно необходимо сначала сделать подкоп со стороны проезжей части моста. Но земляные работы всегда требуют времени, вот почему так часто срывались планы взорвать мост вслед за отступающей армией.

 

Рис. 74. Арка с тремя шарнирными точками.

Рис. 75. Появление четвертого шарнира влечет за собой разрушение арки.

Все это свидетельствует об исключительной устойчивости арок и о том, что они не слишком чувствительны к смещениям в основаниях. В то время как смещения в фундаменте стены могут вызвать обвал[69], смещения в основании арки вызовут в ней только перекосы, которые для арок довольно обычны.

Так, мост Клэр-на-задах в Кембридже весьма заметно изогнут посредине из-за смещений в основаниях арки (рис. 76). Это произошло уже давно, и тем не менее мост абсолютно безопасен.

 

Рис. 76. Мост Клэр-на-задах в Кембридже. Смещения в основаниях привели к перекосу арки, что совершенно не повлияло на безопасность моста.

Точно так же арки очень хорошо выдерживают землетрясения и такого рода напасти, как современные потоки транспорта.

Так что не удивительно, что наши предки часто были более чем привержены к аркам: арка может устоять, даже если вы серьезно ошиблись в вычислениях при ее проектировании (или вообще обошлись без всяких вычислений) и вдобавок решили строить все сооружение на болоте. Последнее на самом деле случилось с несколькими английскими кафедральными соборами.

Следует заметить, что среди развалин чаще всего наиболее сохранившимися оказываются арки. Отчасти это связано с присущей им устойчивостью, хотя не исключено и то, что клинчатые камни арок меньше интересовали окрестных крестьян, чем прямоугольные камни стен. (Последним объясняется и сохранность круглых колонн на развалинах греческих храмов.)

Добиться того, чтобы линия давлений проходила заведомо внутри стены или арки, как правило, легче в случае толстостенной кладки. Но сплошной кирпич и каменные работы очень дороги. Чтобы увеличить толщину стен без больших затрат, римляне стали использовать монолитный бетон. Он представлял собой смесь вулканического туфа (pulvis puteolanis), весьма распространенного в Италии, с известью и добавками песка и гравия.

Если стены и арки делать более толстыми, они становятся более устойчивыми и нет нужды увеличивать их вес. Но чем легче материал, требующий транспортировки и обработки, тем меньше, по-видимому, будет стоимость конструкции. Витрувий, выдающийся ученый древности (расцвет его творчества приходится на 20-е годы до н.э.), известный своими трудами по архитектуре и баллистике, свидетельствует о том, что в его время легковесный бетон нередко получали, добавляя порошок пемзы. Величественный Софийский собор в Константинополе (528 г.) построен именно из такого материала.

Уменьшение веса и стоимости бетона может быть достигнуто также и путем заполнения цементной массы самыми разными сосудами. В древнем мире в виноделии и виноторговле использовались амфоры. Эти большие глиняные сосуды скапливались в огромных количествах. Очевидно, само собою напросилось решение бросать их в бетон. Это обнаружилось во многих поздних римских постройках. В частности, имеются свидетельства, что из такого рода "тары" были сделаны стены прекрасных ранневизантийских церквей в Равенне[70].

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: