Основы физики реакторов. Ядерный топливный цикл. Авария на Чернобыльской АЭС и ее последствия.




Ядерный реактор - аппарат, в котором происходят ядерные реакции - превращения одних химических элементов в другие. Для этих реакций необходимо наличие в реакторе делящегося вещества, которое при своем распаде выделяет элементарные частицы, способные вызвать распад других ядер.

Ядерная реакция это процесс превращения ядер в результате их взаимодействия с элементарными частицами или с другими ядрами.

Деление атомного ядра может произойти самопроизвольно или при попадании в него элементарной частицы. Самопроизвольный распад в ядерной энергетике не используется из-за очень низкой его интенсивности.

В качестве делящегося вещества в настоящее время могут использоваться изотопы урана — уран-235 и уран-238, а также плутоний-239.

В ядерном реакторе происходит цепная реакция. Ядра урана или плутония распадаются, при этом образуются два-три ядра элементов середины таблицы Менделеева, выделяется энергия, излучаются гамма-кванты и образуются два или три нейтрона, которые, в свою очередь, могут прореагировать с другими атомами и, вызвав их деление, продолжить цепную реакцию. Для распада какого-либо атомного ядра необходимо попадание в него элементарной частицы с определенной энергией (величина этой энергии должна лежать в определенном диапазоне: более медленная или более быстрая частица просто оттолкнется от ядра, не проникнув в него). Наибольшее значение в ядерной энергетике имеют нейтроны.

В зависимости от скорости элементарной частицы выделяют два вида нейтронов: быстрые и медленные. Нейтроны разных видов по-разному влияют на ядра делящихся элементов. Медленные нейтроны лучше взаимодействуют с U-235, чем быстрые, поэтому практически во всех реакторах используется вещество-замедлитель нейтронов (в большинстве случаев обыкновенная вода)

Реактивность это отклонение коэффициента размножения от единицы отнесенное к коэффициенту размножения.

При увеличении коэффициента размножения Кэф говорят о внесенной положительной реактивности, при уменьшении - говорят о внесенной отрицательной реактивности.

Для обеспечения безопасной работы реактора увеличение реактивности в реакторе не должно превышать долю запаздывающих нейтронов.

<

где -доля запаздывающих нейтронов.

Физические процессы при пуске реактора.

В начальный момент времени после первой загрузки топливом, цепная реакция деления в реакторе отсутствует, реактор находится в подкритическом состоянии Кэф<1. Температура теплоносителя значительно меньше рабочей. Вывод реактора на мощность осуществляется в несколько этапов. С помощью органов регулирования реактивности реактор переводится в надкритическое состояние Кэф>1 и происходит рост мощности реактора до уровня 1-2 % от номинальной. На этом этапе производится разогрев реактора до рабочих параметров теплоносителя причем скорость разогрева ограничена. В процессе разогрева органы регулирования поддерживают мощность на постоянном уровне. Затем производится пуск циркуляционных насосов и вводится в действие система отвода тепла. После этого мощность реактора можно повышать до любого уровня в интервале от 2 - 100 % номинальной мощности.

Ядерный топливный цикл

Топливный цикл — это комплекс мероприятий по производству, переработке и утилизации отработанного ядерного топлива. Термин «топливный цикл» подразумевает возможность повторного использования отработанного ядерного топлива на атомных установках после специальной обработки.

Необходимые шаги для того, чтобы уран стал топливным элементом. После использования уранового топлива на атомной электростанции и его выдержки в бассейне есть два возможных способа переработки ОЯТ (отработавшего ядерного топлива). Первый способ - прямое захоронение, второй - подвергнуть переработке. Подвергнуть переработке означает отделить уран от плутония в ОЯТ, изготовить новые топливные элементы с этим материалом и повторно использовать в ядерном реакторе. Большинство стран, использующих ядерную энергию, не подвергает ОЯТ переработке.

Обогащение приводит к появлению большого количества обедненного урана. Каждое предприятие по обогащению производит несколько тысяч тонн этого материала в год. По экономическим причинам дальнейшая судьба этого материала не определена. Может быть, что только малая часть будет использована (вне ядерного топливного цикла), а от остального нужно будет избавиться полностью.

Радиоактивные отходы производятся в каждой ядерной установке. Отходы могут быть классифицированы как низкоактивные (НАО), среднеактивные (САО) и высокоактивные (ВАО). По сравнению с другими категориями, высокоактивные отходы составляют небольшое количество по объему, но сосредотачивают в себе большинство радиоактивности. Основными видами высокоактивных отходов являются: отработавшее топливо, подлежащее «прямому» захоронению, полученные в процессе переработки остеклованные радиоактивные отходы (РАО), а также радиоактивные материалы, находящиеся внутри реактора. Существует большое разнообразие низко- и среднеактивных отходов. Количество отходов зависит от типа реактора и требований по обращению с отходами, включая захоронение; эти факторы отличаются в зависимости от страны.

С переработкой или без переработки, но хранилище для окончательного захоронения ядерных отходов необходимо. Это верно не только для большого количества низко и среднеактивных отходов, но также и для отработавшего топлива, потому что, например, отработавшее смешанное оксидное топливо не перерабатывается в промышленном масштабе. В мире не существует репозиториев (места окончательного захоронения) для высокоактивных отходов и отработавшего топлива. Хранилища для низко- и среднеактивных отходов работают в некоторых странах с ядерными программами.

Авария на Чернобыльской АЭС,— разрушение 26 апреля 1986 года четвёртого энергоблока Чернобыльской атомной электростанции, расположенной на территории Украины. Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ. Авария расценивается как крупнейшая в своём роде за всю историю атомной энергетики, как по предполагаемому количеству погибших и пострадавших от её последствий людей, так и по экономическому ущербу. Последствия аварии: смерть людей, лучевая болезнь различной степени тяжести и др.

В результате чернобыльской аварии произошел крупный региональный выброс радионуклидов в атмосферу с последующим радиоактивным загрязнением окружающей среды. Радиоактивное загрязнение затронуло множество европейских стран. Наиболее пострадавшими оказались Беларусь, Российская Федерация и Украина. Выпавшие радионуклиды постепенно распадались и переносились в пределах атмосферной, водной, земной и городской сред, а также между ними.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: