Изгиб с кручением стержней круглого поперечного сечения




 

При сложных деформациях в поперечных сечениях стержней действуют одновременно несколько составляющих внутренних сил, например, крутящий и изгибающий моменты, поперечная и продольная силы. Расчеты на прочность в этом случае основаны на принципе независимости действия сил с применением выбранной теории прочности. Выбор гипотезы прочности определяется прежде всего состоянием материала – пластическим или хрупким.

Решают такие задачи в следующем порядке. Сначала в поперечных сечениях стержня определяют с помощью метода сечений внутренние силы. Для определения положения опасного сечения необходимо построить эпюры внутренних сил. Далее определяют нормальные и касательные напряжения от каждой составляющей внутренних сил. Анализируя распределение напряжений по длине стержня, определяют наиболее нагруженное сечение и наиболее нагруженную точку. Для нее составляют условие прочности с привлечением используемой гипотезы прочности.

Деформации изгиба с кручением подвергаются валы различных передаточных механизмов. Расчет валов на прочность при действии указанных деформаций называют расчетом на статическую прочность по наибольшим усилиям.

На рис. 1, а показана схема нагружения, действующая на двухопорный вал. Для удобства расчета пространственную систему внешних сил представляют в виде сил, вызывающих одновременно изгиб в вертикальной (F1y, F2y) и горизонтальной (F1z, F2z) плоскостях. Вал принимается за статически определимый стержень (рис. 1, б). Соответственно реакции опор определяют в виде составляющих, действующих в вертикальной (RAY, RBY) и горизонтальной (RAZ, RBZ) плоскостях.

На участке вала CD в поперечных сечениях действует крутящий момент Т, равный внешним скручивающим моментам Те. Под действием приложенной нагрузки в сечениях возникают нормальные от изгиба и касательные от изгиба и кручения напряжения. Величиной касательных напряжений от изгиба пренебрегают, так как она незначительна по сравнению с величиной касательных напряжений от кручения.

в
Рис. 1
д
г
а
б

 

Используя принцип независимости действия сил, строим эпюры изгибающих моментов от вертикальных (рис. 1, в) и горизонтальных сил (рис. 1, г), а также эпюру крутящих моментов (рис. 1, д). Сравнивая построенные эпюры, видим, что наиболее опасным является сечение, проходящее через точку С. В этом поперечном сечении помимо крутящего действует и изгибающий момент, величина которого определяется как

. (3)

Известно, что максимальные нормальные напряжения при изгибе будут в крайних волокнах и равны , где W ≈ 0,1d3 – осевой момент сопротивления сечения в виде круга диаметром d. Наибольшие касательные напряжения при кручении возникают в наиболее удаленных от центра точках сечения и определяются как τ = T/Wp = T/(2W), где Wp – полярный момент сопротивления сечения, для круга Wp ≈ 0,2d3. Подставляя значения σ и τ в выражения (1) и (2), запишем соответственно условия прочности вала при использовании третьей и четвертой гипотез прочности:

(4)

и , (5)

где σadm – допускаемое напряжение материала вала при растяжении. Из выражений (4) и (5) можно найти значение осевого момента сопротивления W поперечного сечения вала как или и далее величину диаметра вала .

Местные напряжения

 

Напряжения при растяжении (сжатии), изгибе, кручении и сложных деформациях, определяемые по рассмотренным выше зависимостям, называют расчетными или номинальными. Экспериментально установлено, что в местах приложения сил, в местах ослабления поперечного сечения отверстиями или выточками, в местах резкого изменения величины поперечного сечения действительные напряжения больше расчетных. Различие действительных и расчетных напряжений наблюдается в ограниченной зоне, т.е. носит местный характер, поэтому и сами напряжения в этой зоне называются местными напряжениями.

 

Концентрация напряжений

 

Возникновение больших местных напряжений в местах нарушения правильной цилиндрической или призматической формы стержня называется концентрацией напряжений. Выточки, отверстия, резкие изменения размеров поперечного сечения и другие очаги концентрации напряжений называют концентраторами напряжений.

Так, при растяжении полосы (рис. 2, а, б, в) силами F в сечениях k – k напряжения равны номинальным σ = F/A, где А – площадь поперечного сечения полосы. При наличии в пластине отверстия (рис. 2, б) или выточки (рис. 2, в) распределение напряжений изменяется: у краев отверстия и выточки напряжения максимальны (σmax) и много больше расчетных. Подобное можно наблюдать при изгибе (рис. 3, а), где σ = Ми/W = (F·ℓ)/W, а σmax > σ.

 

 
 
 
в
б
а

 

Рис. 2

 

Количественной мерой концентрации напряжений служит коэффициент концентрации. Различают теоретический и эффективный коэффициенты концентрации напряжений.

Теоретический коэффициент концентрации αK равен отношению наибольшего местного напряжения σmax в сечении к расчетному напряжению σ в этом сечении, т.е. αK = σmax/σ. Наибольшие напряжения σmax в местах концентрации определяют экспериментально или рассчитывают с помощью методов теории упругости. Величина теоретического коэффициента концентрации зависит от вида и размера концентратора и может достигать трех и более. При определении αK не учитывают влияние свойств материала, в частности чувствительность материала к наличию концентраторов. Величина αK определена для большинства встречающихся типовых конструктивных элементов, значения αK приводятся в справочной литературе в виде таблиц и графиков.

Концентрация напряжений различно влияет на прочность конструктивных элементов в зависимости от свойств материала и от характера нагружения. Это учитывается с помощью эффективного коэффициента концентрации Кσ. При статическом нагружении величина Кσ определяется как отношение предела прочности σu образцов без концентраторов к пределу прочности σuк образцов, имеющих заданный концентратор, т.е. Кσ = σuuк. Для пластичных материалов при статических нагрузках концентрация напряжений практически не влияет на прочность. Несущая способность конструкции сохраняется благодаря местной пластической деформации без образования трещин в зоне повышенных напряжений. Можно считать для пластичных материалов Кσ = 1 и не учитывать концентрацию напряжений при статическом нагружении. Для хрупких материалов величина Кσ приближается к значению теоретического коэффициента концентрации αК. Детали из хрупких материалов при наличии концентрации напряжений рассчитывают на прочность по пониженным допускаемым напряжениям σadm. Снижение σadm можно считать как увеличение коэффициента запаса прочности n в Кσ раз (σadm = σu /n).

Концентрация напряжений обязательно должна учитываться в расчетах на прочность при действии переменных нагрузок.

Для уменьшения концентрации напряжений необходимо: применять плавные переходы, называемые галтелями при резком изменении размеров поперечного сечения (рис. 3, б); прорези заменять полукруглыми выточками; увеличивать радиусы закруглений галтелей и выточек; круглые отверстия заменять эллиптическими, вытянутыми вдоль оси стержня; необходимые отверстия располагать в зоне пониженных напряжений и т.д.

 

б
а
 
 

 

Рис. 3 Рис. 4

Контактные напряжения

Большие местные напряжения возникают в местах соприкосновения действующих друг на друга тел. Напряжения, возникающие в месте соприкосновения двух прижатых друг к другу тел, называют контактными. В месте соприкосновения тел вследствие деформации материала образуется площадка контакта.

По контактным напряжениям рассчитывают фрикционные и зубчатые передачи, элементы кулачковых механизмов. Определение контактных напряжений при малых размерах площадок контакта для тел различной конфигурации (контактная задача) рассматривается в теории упругости. Расчет базируется на следующих допущениях: в месте контакта возникают только упругие деформации; поверхности соприкасающихся тел идеально гладкие, и силы давления, распределенные по площадке контакта, нормальны к поверхности контакта; на площадке контакта возникают только нормальные напряжения. При размерах площадок контакта, малых по сравнению с общей поверхностью соприкасающихся тел, для определения контактных напряжений используют зависимости, полученные Г. Герцем. Напряжения в месте контакта зависят от геометрии соприкасающихся тел. Приведем без вывода расчетные формулы для случая сжатия двух цилиндров (рис. 4) с радиусами R1 и R2 и длиной по образующей. Считают, что сила прижатия F передается через узкую площадку контакта шириной b и длиной . Возникающие на площадке нормальные напряжения распределяются по ее ширине в эллиптической зависимости, достигая наибольшего значения в точках оси площадки. Величина наибольших контактных напряжений, как показал Герц, равна

, (6)

где q = F/ℓ – удельная нагрузка; Eп = 2E1E2/(E1 + E2) – приведенный модуль упругости материалов цилиндров; μ – коэффициент Пуассона материала; ρп = R1R2/(R1 ± R2) – приведенный радиус кривизны цилиндров, знак «–» берут в случае контакта выпуклой поверхности радиусом R2 с вогнутой поверхностью радиусом R1. Для материалов с коэффициентом Пуассона μ = 0,3 выражение (6) примет вид

. (7)

Из формулы (7) следует, что контактные напряжения не являются линейной функцией сжимающей силы F и зависят от модуля упругости материала. Они меняются медленнее, чем сама сила, что связано с изменением ширины площадки контакта.

Если размеры площадки контакта соприкасающихся тел значительны и сопоставимы с величиной радиуса кривизны соприкасаемых поверхностей, имеет место деформация смятия. Например, деформацию смятия рассматривают при определении контактных напряжений между боковой поверхностью заклепки, болта и цилиндрической поверхностью отверстия. Считают, что напряжения смятия распределены по площадке контакта равномерно, перпендикулярны к ней и определяются как

σcon = F/Acon, (8)

где F – сила прижатия контактирующих тел; Асоп – площадь смятия. В качестве площади смятия принимают не фактическую, а некоторую условную площадку контакта. Так, если поверхность смятия цилиндрическая (например, поверхность соприкосновения заклепки и листа), то в расчетную формулу (8) подставляют площадь, равную проекции поверхности соприкосновения на диаметральную плоскость. Поэтому, Асоп = k(d·h), где k – число заклепок; d·h – площадь смятия одной заклепки диаметром d; h – высота листа, сминающего заклепку. Если поверхность смятия плоская (смятие призматических шпонок), площадь смятия определяют умножением длины на ширину. Отметим, что допускаемые напряжения на смятие принимают в 2 … 2,5 раза больше допускаемых напряжений на сжатие.


ЛИТЕРАТУРА

  Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем: Учебное пособие. М.: – Высш. шк., 2001. – 480 с.  
  Сурин В.М. Техническая механика: Учебное пособие. – Мн.: БГУИР, 2004. – 292 с.  
  Ванторин В.Д. Механизмы приборных и вычислительных систем: Учебное пособие. – М.: Высш. шк., 1999. – 415 с.    

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: