Эволюция строения атомов и возникновение лучей строения атомов




СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ.. 3

1. Эволюция строения атомов и возникновение лучей строения атомов 4

2. Спектры изучения постулатов Бора. 7

3. Корпускулярно-волновые свойства микрочастиц. 10

ЗАКЛЮЧЕНИЕ.. 20

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ... 22

 


ВВЕДЕНИЕ

 

Для познания окружающего нас мира человеку пришлось пройти увлекательный, но мучительно-длинный и трудный путь изучения вещества, начиная от самых сложных его форм и кончая элементарными частицами.

В данной работе будет рассмотрен этот путь не в прямом, а в самом в обратном направлении. Зная свойства элементарных частиц, будет уже сравнительно просто построить из них более сложные объекты – атомные ядра и атомы – и понять их свойства.

Открытие сложного строения атома - важнейший этап становления современной физики. В процессе создания количественной теории строения атома, позволившей объяснить атомные системы, были сформированы новые представления о свойствах микрочастиц, которые описываются квантовой механикой.

Первую попытку создать качественно новую модель атома предпринял в 1913г. датский физик Нильс Бор. Он связал в единое целое эмпирические закономерности линейчатого спектра излучения атома водорода, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории атома Бор положил два постулата.

Целью данной работы является изучение строения атомов, концепции непрерывной дескрепы, электромагнитных свойств атомов и материи. Исследование такой возможности представляет огромный интерес для науки.

В процессе изучения ставятся следующие задачи:

– охарактеризовать эволюцию представлений о строении атомов и строение атомов по моделям Э. Резерфорда и Н. Бора;

– раскрыть сущность открытия в области возникновения лучей при электрическом разряде;

– изучить спектры постулатов Н. Бора;

– рассмотреть двойственную природу корпускулярно-волновых микрочастиц.

Эволюция строения атомов и возникновение лучей строения атомов

 

Представление об атомах как неделимых мельчайших частицах вещества возникло еще в античные времена (Левкипп, Демокрит, Эпикур, Лукреций). В средние века учение об атомах, будучи материалистическим, не получило широкого признания. Атомистическая теория приобретает все большую популярность лишь к концу XVIII в. благодаря трудам великого русского ученого М.В. Ломоносова, английского химика и физика Д. Дальтона и др. Однако в то время вопрос о строении атомов даже не ставился - они считались неделимыми.

Большой вклад в развитие атомистической теории внес выдающийся русский химик Д.И. Менделеев. Исходя из единой природы атомов, он разработал в 1869 г. Периодическую систему элементов. Выраженная в ней закономерная связь между всеми химическими элементами наталкивала на мысль о том, что в основе строения всех атомов лежит общее свойство: все они находятся в близком родстве друг с другом. Однако до конца XIX в. в химии господствовало метафизическое убеждение: атом - наименьшая частица простого вещества, последний предел делимости материи. При этом предполагалось, что во всех химических превращениях распадаются и вновь создаются только молекулы, а атомы остаются неделимыми, т.е. не могут дробиться на более мелкие части. [3, с.144]

Существование закономерной связи между всеми химическими элементами, ярко выраженное в периодической системе Менделеева, наталкивает на мысль о том, что в основе строения всех атомов лежит общее свойство: все они находятся в близком родстве друг с другом.

Однако до конца XIX в. в химии господствовало метафизическое убеждение, что атом есть наименьшая частица простого вещества, последний предел делимости материи. При всех химических превращениях разрушаются и вновь создаются только молекулы, атомы же остаются неизменными и не могут дробиться на более мелкие части.

Различные предположения о строении атома долгое время не подтверждались какими-либо экспериментальными данными. Лишь в конце XIX в. были сделаны открытия, показавшие сложность строения атома и возможность превращения при определенных условиях одних атомов в другие. На основе этих открытий начало быстро развиваться учение о строении атома.

Первые косвенные подтверждения о сложной структуре атомов были получены при изучении катодных лучей, возникающих при электрическом разряде в сильно разреженных газах. Изучение свойств этих лучей привело к заключению, что они представляют собой поток мельчайших частиц, несущих отрицательный электрический заряд и летящих со скоростью, близкой к скорости света. Особыми приемами удалось определить массу катодных частиц и величину их заряда, выяснить, что они не зависят ни от природы газа, остающегося в трубке, ни от вещества, из которого сделаны электроды, ни от прочих условий опыта. Кроме того, катодные частицы известны только в заряженном состоянии и не могут быть лишены своих зарядов и превращены в электронейтральные частицы: электрический заряд составляет сущность их природы. Эти частицы, получившие название электронов, были открыты в 1897 г. английским физиком Дж. Томсоном.

Различные предположения о сложной структуре атома долгое время не подтверждались опытами. Лишь проведенные в конце XIX в. эксперименты доказали сложное строение атомов и возможность их взаимного превращения. Активное изучение строения атома началось в 1897 г. после открытия электрона английским физиком Дж. Томсоном. В 1903 г. он предложил первую модель атома: атом представляет собой непрерывно заряженный положительным электрическим зарядом шар, внутри которого около своих положений равновесия колеблются электроны; суммарный заряд электронов равен положительному заряду шара, поэтому атом в целом нейтрален. Однако предположение о непрерывном распределении положительного заряда внутри атома не подтвердилось экспериментом.

В развитии представлений о строении атома велико значение опытов английского физика Э. Резерфорда (1871-1937) по рассеянию альфа-частиц в веществе. Альфа-частицы испускаются при радиоактивных превращениях. Их электрический заряд положителен и равен по модулю двойному заряду электрона. Это тяжелые частицы: масса их примерно в 7 300 раз больше массы электрона. Исследуя прохождение альфа-частиц через золотую фольгу, Резерфорд обнаружил, что основная их часть испытывает незначительные отклонения, а некоторые из них (примерно, одна из 20 000) резко отклоняются от первоначального направления - вплоть до 180°. Поскольку электроны не могут существенно повлиять на характер движения столь тяжелых и быстрых альфа-частиц, Резерфорд сделал вывод: значительное отклонение альфа-частиц обусловлено их взаимодействием с положительным зарядом большей массы. Такое отклонение испытывали лишь немногие альфа-частицы, т.е. те, которые оказались вблизи положительного заряда сравнительно небольших размеров.

В центре атома находится положительно заряженное ядро, вокруг которого по разным орбитам вращаются электроны. Возникающая при их вращении центробежная сила уравновешивается притяжением между ядром и электронами, вследствие чего они остаются на определенных расстояниях от ядра. Поскольку масса электрона ничтожна мала, то почти вся масса атома сосредоточена в его ядре. На долю ядра и электронов, число которых сравнительно невелико, приходится лишь ничтожная часть всего пространства, занятого атомной системой. [3, с.145]

Анализируя результаты опытов, Резерфорд предложил в 1911 г. ядерную (планетарную) модель атома: вокруг положительного ядра, имеющего заряд Ze (Z - порядковый номер элемента в системе Менделеева, е - элементарный заряд), по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Движущиеся по замкнутым орбитам электроны обладают центростремительным ускорением. Согласно классической электродинамике, ускоренные электроны излучают электромагнитные волны, вследствие чего непрерывно теряют энергию. Поэтому электрон, вращаясь вокруг ядра, излучает энергию. В результате потери энергии, двигаясь по спирали и приближаясь к ядру, он в конце концов упадет на него. Таким образом, атом в модели Резерфорда оказался неустойчивой системой.

Попытки создать модель атома в рамках классической физики не привели к успеху: модель Томсона была опровергнута опытами Резерфорда, планетарная же модель не смогла объяснить устойчивость атомов. Преодоление возникших трудностей требовало принципиально нового подхода.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-10-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: