Виды лазеров и их применение.




Области применения спектроскопии.

 

Детектирование опасных веществ

В последнее время возросла потребность в определении химического состава вещества или определение его наличия на том или ином предмете. Это вызвано в первую очередь с возросшей опасностью транспортировки взрывчатых и наркотических веществ с целью использования и перепродажи. В некоторых странах данный бизнес возрос до невероятных пределов и поддерживает экономику этих стран.

В связи с возникающими угрозами требуется быстро, мобильно распознать вещество, определить его точное местоположение и нейтрализовать курьера. Тут нам могут помочь несколько оптических методов, каждый со своими достоинствами и недостатками.

- Поглощательная спектроскопия на терагерцевых волнах

- Рамановская спектроскопия

- Лазерная эмиссионная спектроскопия LIBS

- Поглощательная спектроскопия

- Фурье – спектрометрия

- Метод НПВО.

 

Лазерная спектроскопия по сравнению с другими бесконтактными оптическими методами диагностики позволяет проводить измерения на значительном расстоянии от исследуемого объекта и получать информацию об его составе (например, лидарное зондирование атмосферы). Принципиально новые возможности лазерная спектроскопия приобрела с появлением лазеров с плавно перестраиваемой частотой, которые являются комбинацией источника света и спектрометра ультравысокого разрешения, что даёт возможность измерять профили спектральных линий. Одними из наиболее перспективных аппаратурных комплексов представляются диагностические системы, состоящие из лазеров на красителях с оптической накачкой эксимерными лазерами. Кроме того, эксимерные лазеры могут применяться как самостоятельные системы, например, для диагностики в биологии и медицине.

Еще одно актуальное направление состоит в возможности использования специализированных лазерных систем для геофизических и космических лидаров и лидарных систем для экологического мониторинга окружающей среды. Важными приложениями также представляют исследования предварительно облученных оптических материалов для ИТЭРа, применение лазерно-индуцированной фотолюминесценции для диагностики биологических объектов в интересах медицины и микробиологии.

 

Виды лазеров и их применение.

По режиму работы лазеры можно разделить на импульсные и непрерывного действия. По виду активной среды лазеры делятся на газовые, жидкостные, полупроводниковые и твердотельные. По способу накачки: лазеры с оптической накачкой, газоразрядные лазеры, химические лазеры, ижекционные, лазеры и с электронной накачкой.

Применение лазеров в спектроскопии резко повысило возможность традиционных методов, кроме того, позволило создать методы, основанные на принципиально новых физических принципах. Чувствительность спектроскопических методов доведена до предельного уровня, ограниченного регистрацией единичных атомов и молекул. Методы лазерной спектроскопии используются в лазерной химии, лазерном разделении изотопов.

Лазеры широко применяют в измерительной технике. Например, лазерные интерферометры на гелий-неоновых лазерах позволяют с большой точностью производить юстировочные и нивелировочные работы. Широко используются лазерные светодальномеры и даже лазерные рулетки на портативных полупроводниковых лазерах.

Применения лазеров столь обширны, что здесь невозможно даже их простое перечисление, кроме того, область применения лазеров постоянно расширяется.

С появлением лазеров связано рождение таких новых разделов физики как нелинейная оптика и голография.

Нелинейная оптика исследует распространение мощных световых пучков в твердых телах, жидкостях и газах и их взаимодействия с веществом. Напряженности электрического поля в мощных лазерных пучках сравнимы или даже превышают внутриатомные поля. Это приводит к возникновению новых оптических эффектов и существенно меняет характер уже известных явлений. В частности, в 1969 г. была обнаружена самофокусировка света: мощный световой пучок, распространяясь в среде, не испытывает дифракционной расходимости, а, напротив, самопроизвольно сжимается.

Голография (от греческого holos – весь, полный, grapho – пишу) – способ записи и восстановления волнового поля, основанный на регистрации интерференционной картины, которая образована волной, отраженной предметом, освещаемым источником света (предметная волна), и когерентной с ней волной, идущей непосредственно от источника света (опорная волна). Зарегистрированная интерференционная картина называется голограммой.

Голограмма, освещенная опорной волной, создает такое же амплитудно-фазовое пространственное распределение волнового поля, которое создавала при записи предметная волна. Таким образом, голограмма, за счет дифракции опорной волны на записанной в ней интерференционной картине, преобразует опорную волну в копию предметной.

Основы голографии были заложены в 1948 году английским физиком Д. Габором, венгром по происхождению. Экспериментальное воплощение и дальнейшая разработка этого способа стали возможными лишь после появления источников света высокой степени когерентности – лазеров.

 

СПЕКТРАЛЬНЫЕ ПРИБОРЫ.

 

Простейшим оптическим прибором, предназначенным для разложения света на спектральные составляющие и визуального наблюдения спектра, является спектроскоп. Современные спектроскопы, снабженные устройствами для измерения длин волн, называются спектрометрами. Квантометры, полихроматоры, квантоваки и др. также относятся к семейству спектрографов. В спектрографах спектр регистрируется одновременно в широком диапазоне длин волн; для записи спектров используются фотопластинки и многоканальные детекторы (фотодиодные линейки, фотодиодные матрицы). В спектрофотометрах осуществляется фотометрирование, т.е. сравнение измеряемого потока излучения с эталонным, и производится электронная запись спектров. Эмиссионный спектрометр обычно состоит из источника излучения (излучаемый образец), щелевой диафрагмы, коллимирующей линзы или коллимирующего зеркала, диспергирующего элемента, фокусирующей системы (линзы или зеркала) и детектора. Щель вырезает узкий пучок света от источника, коллимирующая линза расширяет его и преобразует его в параллельный. Диспергирующий элемент разлагает свет на спектральные составляющие. Фокусирующая линза создает изображение щели в фокальной плоскости, где помещается детектор. При изучении поглощения применяется источник со сплошным спектром, а ячейка с поглощающим образцом помещается в определенных точках на пути светового потока.

Методы спектрального разложения.

 

Спектральное разложение света осуществляется тремя методами: дисперсией за счет преломления в призмах, дифракцией на периодических решетках и с использованием интерференции. Призмы для ИК-области изготавливаются из различных неорганических кристаллов, для видимого и УФ-излучения – из стекла и кварца соответственно. В большинстве современных приборов вместо призм применяются дифракционные решетки с большим числом тесно расположенных штрихов. Спектрометры с дифракционными решетками позволяют производить измерения во всем оптическом диапазоне. Разложение света на спектральные составляющие в них более равномерное, чем в призменных спектрометрах. Штрихи решетки часто наносятся непосредственно на фокусирующие зеркала, что позволяет обойтись без линз. В настоящее время все шире применяются голографические дифракционные решетки, обеспечивающие более высокое разрешение, чем решетки обычного типа. В интерференционных спектрометрах луч света разделяется на два луча, которые следуют разными путями, а затем, снова соединяясь, дают интерференционную картину. Интерферометры обеспечивают самое высокое разрешение и применяются для исследования тонкой и сверхтонкой структуры спектров, а также для измерения относительных длин волн. Интерферометр Фабри – Перо используется как эталон для измерения длин волн в спектрометрах.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: