Обобшенные зависимости между статическими и кинематическими параметрами рабочей части инструмента.




Статическая система координат – прямоугольная система координат с началом в рассматриваемой точке режущей кромки, ориентированная относительно направления скорости главного движения резания.

Кинематическая система координат – прямоугольная система координат с началом в рассматриваемой точке режущей кромки, ориентированная относительно направления скорости результирующего движения резания.

Геометрические параметры (углы) режущего инструмента рассматриваются в этих системах координат. В статической – как геометрические параметры твердого тела – неподвижного предмета, в кинематической – как углы работающего инструмента в процессе резания. На рис.3.2. показаны токарный резец в проекции на основную плоскость 1, сечения его в главной секущей плоскости 2, в рабочей плоскости 3 и вспомогательной секущей плоскости 4, вид резца со стороны главной задней поверхности 5 и следы координатных и секущих плоскостей.

Pvc – след основной плоскости, Pnc – след плоскости резания, Ps — след рабочей плоскости, – след главной секущей плоскости.

Рис. 3.2. Геометрические параметры режущей части резца в статической системе координат.

 

Основной плоскостью Pv называется координатная плоскость, проходящая перпендикулярно направлению главного движения (вектору скорости резания). Для случая токарной обработки она параллельна продольной и поперечной подачам и параллельна опорной поверхности (основанию) призматической зажимной части резца.

Плоскостью резания Pn называется координатная плоскость, проходящая через главную режущую кромку перпендикулярно основной плоскости.

Плоскость, проходящая через главную режущую кромку перпендикулярно основной плоскости и параллельно направлению движения подачи, называется рабочей плоскостью Ps.

Геометрические параметры режущего инструмента рассматриваются в плане, то есть в проекции на основную плоскость, и в секущих плоскостях: главной секущей плоскости, нормальной секущей плоскости, в рабочей плоскости и в других вспомогательных секущих плоскостях.

Нормальной секущей плоскостью Pn называется секущая плоскость, проходящая перпендикулярно (нормально) режущей кромке в рассматриваемой точке.

Главной секущей плоскостью называется координатная плоскость, перпендикулярная линии пересечения основной плоскости с плоскостью резания и проходящая через главную режущую кромку.

В плане, то есть в проекции на основную плоскость, рассматриваются следующие углы: главный угол в плане , угол при вершине в плане , вспомогательный угол в плане . Эти углы связаны между собой зависимостью:

.

Рис. 3.3. Статические и кинематические углы резца и зависимость их от подачи и диаметра обрабатываемой поверхности

В главной секущей плоскости рассматриваются углы: главный задний , передний угол и угол заострения . Во вспомогательной секущей плоскости рассматривается и измеряется только один угол – вспомогательный задний угол . В плоскости резания измеряется угол наклона главной режущей кромки .

Сумма углов резца в главной секущей плоскости равна 90 градусам:

.

Кроме рассмотрения углов резца в статической системе координат как углов какого-то геометрического тела (или углов резца в статике) следует рассматривать углы резца в движении, в кинематической системе координат. В результате сложения главного движения с движением подачи при резании изменяется величина углов режущего инструмента, приданных ему при заточке.

Углы в статической системе координат называются статическими углами, углы в кинематической системе координат – кинематическими. Величина кинематических углов отличается от величины статических на величину кинематического угла скорости резания , угла между векторами скорости резания v и скорости результирующего движения vе. Из рис.3.2. видно, что при резании задний угол уменьшается, а передний увеличивается на величину угла скорости резания. Величина этого кинематического угла легко определяется из схемы на рис.3.3., где резец условно показан в контакте с разверткой обрабатываемой торцевой поверхности на цилиндрической заготовке. Здесь видно, что:

; ;

Рис. 3.4. Зависимость величины переднего и заднего углов от установки резца.

; ,

где d – диаметр обрабатываемой поверхности, мм; s – величина подачи, мм/об.

Действительная величина углов резца зависит также от установки его относительно оси центров токарного станка. Зависимость эта поясняется схемой на рис. 3.4. Из схемы видно, что действительная величина переднего и заднего углов ( и ) изменяется на величину угла установки . Его величина определяется из соотношения

;

где d – диаметр обрабатываемой детали, мм; h – высота смещения вершины резца, мм.

Величина угла равняется величине угла:

;

Действительные углы:

, ;

На представленных выше рисунках показаны упрощенные схемы расчета действительных углов. В обычных, не упрощенных случаях величины углов находятся в более сложной зависимости. Из приведенных данных видно, что изменение углов инструмента при резании тем больше, чем меньше диаметр обрабатываемого изделия и больше подача. При установке резца выше центра задний угол уменьшается, а передний – увеличивается. При установке резца ниже центра увеличивается задний угол и уменьшается передний.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: