Судьба мутантного аллеля в популяциях диплобионтов




Микроэволюция. Элементарные эволюционные факторы

 

1. Общая характеристика элементарных эволюционных факторов. Мутационный процесс. Рекомбинации

2. Дрейф генов. Генетическая гетерогенность и уникальность природных популяций

Общая характеристика элементарных эволюционных факторов.

Мутационный процесс. Рекомбинации

Элементарные эволюционные факторы – это стохастические (вероятностные) процессы, протекающие в популяциях, которые служат источниками первичной внутрипопуляционной изменчивости.

К основным ЭЭФ относятся: мутационный процесс, рекомбинации и давление мутаций. Эти факторы обеспечивают появление в популяциях новых аллелей (а также хромосом и целых хромосомных наборов). К дополнительным ЭЭФ относятся: популяционные волны, изоляция, эффект основателя, дрейф генов. Эти факторы обеспечивают эффект «бутылочного горлышка», способствующий изменению частот аллелей в популяции. К ЭЭФ относятся и другие процессы, способные изменить генетическую структуру популяции: миграции (поток генов), мейотический драйв и прочие.

 

МУТАЦИОННЫЙ ПРОЦЕСС

Мутационный процесс – это процесс возникновения в популяциях самых разнообразных мутаций: генных, хромосомных и геномных. Мутационный процесс является важнейшим элементарным эволюционным фактором, поскольку поставляет элементарный эволюционный материал – мутации. Именно мутации обеспечивают появление новых вариантов признака, именно мутации лежат в основе всех форм изменчивости.

Мутации, которые не подвергаются заметному действию отбора, называются селективно нейтральными. В теории эволюции обычно рассматриваются только генеративные мутации; генетические мозаики в эволюционных моделях не рассматриваются. Если тип мутации не оговаривается специально, то обычно мутацией называют изменение исходного аллеля некоторого гена; такое изменение записывают следующим образом: Аа или аА или а 0аk (где k – некоторый символ, например, номер мутации). Ген может мутировать в различных направлениях; в результате могут возникать обратные мутации, при которых действие одной мутации отменяется другой мутацией. Например, действие прямой мутации Aа отменяется обратной мутацией аА. При этом обратная мутация может быть истинной, но может быть и следствием внутригенной супрессии (например, потеря одной пары оснований компенсируется вставкой другой пары).

Частота мутаций конкретных генов очень низка: она колеблется от 10-3 (мутирует один ген из тысячи) до 10-10 (мутирует один ген из десяти миллиардов). В среднем можно считать, что лишь несколько гамет из миллиона содержит новую мутацию по данному гену, тогда частота мутации составляет n ×10-6 или просто ~ 10-6. (Более подробная характеристика мутаций рассматривается в курсе генетики.)

Носителями мутации называются организмы, все клетки которых несут рассматриваемую мутацию (например, гетерозиготы Аа), но эта мутация не проявляется в фенотипе и не может подвергаться действию отбора. Мутантами мы будем называть организмы, у которых мутация обнаруживается в фенотипе и может подвергаться действию отбора (заметим, что термин «мутант» используют в самых различных значениях). В разных группах организмов возможность фенотипического проявления мутантного аллеля различна.

Судьба мутантного аллеля в популяциях диплобионтов

Диплобионты – это диплоидные организмы, к которым относятся все животные, а также растения и грибы в диплоидной фазе. В простейших эволюционных моделях анализируются популяции, близкие к идеальным (бесконечно большие, стационарные, амфимиктические, панмиктические). У диплобионтов каждый ген представлен двумя аллелями, которые различным образом взаимодействуют между собой.

1. Рецессивные аутосомные мутации. Практически не имеют шансов проявиться в фенотипе. Вероятность встречи мутантных аллелей равна квадрату вероятности (или частоты) мутирования данного гена – q2 (aa). В среднем, вероятность образования новой рецессивной гомозиготы колеблется от (10-5)2 = 10-10 до (10-6)2 = 10-12. Иначе говоря, вероятность фенотипического проявления мутантного рецессивного аллеля не превышает одного шанса из десяти миллиардов.

У носителей рецессивной мутации (гетерозигот Аа) мутантный аллель а не проявляется в фенотипе и не подвергается действию естественного отбора. В стационарной популяции этот аллель может совершенно случайно не перейти в следующее поколение.

Это связано с тем, что вероятность утраты мутантного аллеля L зависит от числа потомков N в семье: L =1 при N =0; L =1/2 при N =1; L =1/4 при N =2; L =1/8 при N =3; L =(1/2) X при N = X. Средняя плодовитость пары особей равна 2 потомкам, достигшим репродуктивного возраста, но фактическая плодовитость изменяется от 0 до Х. Если фактическая плодовитость пары велика, то велика и вероятность передачи мутации в хотя бы одному потомку. Если же плодовитость снижена (или равна 0), то снижена (или равна 0) и вероятность сохранения мутации.

Расчёты показывают, что из 100 новых мутаций в каждом последующем поколении сохранится только их часть:

 

Поколения                            
Число сохранившихся мутаций                            

 

Таким образом, под воздействием совершенно случайных факторов мутантный аллель постепенно исчезает (элиминируется) из популяции.

Кроме того, подавляющее большинство аутосомно-рецессивных мутаций в гомозиготном состоянии значительно снижает приспособленность организмов. Поэтому некоторые эволюционисты считают, что рецессивные мутации вообще не могут играть заметной роли в эволюции; это ошибки, которые снижают приспособленность особей и среднюю приспособленность популяции.

2. Рецессивные мутации, сцепленные с полом. Такие мутации сразу проявляются у гетерогаметного пола. У человека такие мутации приводят к развитию тяжёлых заболеваний: гемофилии (А и В), мышечной дистрофии Дюшена. Примеры подобных мутаций, имеющих адаптивное значение, нам неизвестны.

3. Мутантный аллель доминирует над исходным (аА). Доминантная мутация сразу проявляется в фенотипе и подвергается действию естественного отбора. Эти типы мутаций встречаются в 1000 раз реже, чем рецессивные, практически все они летальны или полулетальны; примеры таких мутаций у человека: поликистоз почек, нейрофиброматоз, множественный полипоз толстой кишки. Однако некоторые доминантные мутации могут проявляться как преадаптации; адаптивное значение может иметь чёрная окраска насекомых (например, у берёзовой пяденицы), а также позвоночных. В этом случае отбор действует подобно механическому ситу и отбирает уже готовые варианты – преадаптации.

4. Мутантный аллель проявляет сверхдоминирование, частичное доминирование или кодоминирование по отношению к исходному. В данном случае мутация также сразу проявляется в фенотипе и подвергается действию отбора. Некоторые полудоминантные мутации могут иметь адаптивное значение, например, у человека полудоминантная мутация серповидноклеточной анемии в гетерозиготном состоянии обеспечивает устойчивость к малярии. В целом данная ситуация изучена недостаточно.

При анализе мутационного процесса у диплобионтов нужно учитывать явление множественного аллелизма. Один и тот же ген мутирует различным образом, что приводит к существованию в популяции серий множественных аллелей (например, а 1, а 2, а 3 и т.д.). Эти аллели могут встретиться в компаунд-гетерозиготе (например, а 1 а 2). Тогда между разными мутантными аллелями возможны все типы перечисленных выше взаимодействий. Особый случай представляет возникновение разных мутаций с одинаковым фенотипическим эффектом (например, а 1 а 1= а 2 а 2= а 1 а 2).

Судьба мутантного аллеля в популяциях гаплобионтов и полиплоидов

К гаплобионтам относятся все прокариоты; водоросли и грибы в гаплоидной фазе; половые клетки животных. У многих таких организмов половое размножение отсутствует.

У гаплобионтов мутантный аллель обычно сразу проявляется в фенотипе и подвергается действию естественного отбора. В этом случае отбор действует подобно механическому ситу. В результате некоторые мутации сразу же приобретают адаптивный характер, например, у бактерий появляется устойчивость к лекарственным препаратам (тетрациклину, пенициллину и др.).

Однако довольно часто у гаплоидов наблюдается многократное дублирование (амплификация) одного и того же гена, что позволяет мутантным аллелям находиться в квазигетерозиготном состоянии. В этом случае рецессивная мутация может не проявиться в фенотипе, что делает её недоступной для действия естественного отбора.

К полиплоидам относятся многие растения и некоторые животные. У автополиплоидов наблюдаются те же закономерности, что и у диплоидов, но шансы на проявление в фенотипе рецессивных мутаций ещё меньше. При частоте мутации 10–6 вероятность ее фенотипического проявления у тетраплоидов равна q4 (аааа) = 10–24.

Мутационный процесс дополняется некоторыми специальными механизмами, способствующими сохранению мутаций или изменению экспрессии мутантных аллелей.

Давление мутаций

Одна и та же мутация с одной и той же частотой р возникает в каждом поколении. В то же время мутантный аллель может быть утрачен под воздействием случайных факторов (в т.ч. и вследствие обратных мутаций). Если не учитывать обратных мутаций, то фактическая частота мутантного аллеля нелинейно возрастает. Зависимость частоты мутантного аллеля от порядкового номера поколения может быть примерно аппроксимирована логарифмической функцией. Расчёты показывают, что частота рецессивного селективно нейтрального мутантного аллеля (и вероятность его фенотипического проявления) возрастает примерно следующим образом:

 

Поколения                
q (а), ×10 –- 6                
q 2 (aa), ×10 – 12                

 

Таким образом, в длительно существующей популяции вероятность фенотипического проявления рецессивного мутантного аллеля возрастает в десятки и сотни раз за счёт давления мутаций. В то же время нужно признать, что реальные популяции существуют ограниченное число поколений, поэтому давление мутаций не может принципиально изменить генетическую структуру популяций.

Мейотический драйв

Этим термином обозначают механизмы, с помощью которых мутантные гены могут избегать элиминации естественным отбором. Если такой ген одновременно обеспечивает преимущество несущей его хро­мосомы в течение мейоза, то процент гамет с таким геном окажется выше, чем можно было бы ожидать. Мейотический драйв – это сила, способная изменить механизм мейотического деления клетки таким образом, что соотношение производи­мых гетерозиготой гамет отклоняется от обычного (50: 50). Ряд генов, обладающих таким действием, выявлен у мышей, у дрозофил.

Генетический импринтинг

При генетическом импринтинге экспрессия генов зависит от пола особи, передающей данный ген потомкам. Например, некоторый мутантный аллель, переданный матерью, будет включён у её потомка, но такой же аллель, переданный отцом, будет инактивирован у его потомка (инактивированный аллель называется импринтным).

Импринтинг проявляется на разных уровнях организации генетического материала: различают импринтинг целого генома, отдельных хромосом и отдельных генов. Механизмы импринтинга интенсивно изучаются; универсальным механизмом, вероятно, является метилирование азотистых оснований. Не вызывает сомнений, что существуют особые гены, контролирующие импринтинг – импринторы, или гены молчания.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: