Задание на контрольную работу № 4




401. Точка совершает гармонические колебания с периодом 2 с. Ам­плитуда колебаний 10 см. Найти смещение, скорость и ускорение точки спустя 0,2 с после ее прохождения через положение равновесия. Начало колебаний связано с положением равновесия.

402. Чему равно отношение кинетической энергии точки, совершающей гармонические колебания, к ее потенциальной энергии для момента времени t = T /12, где Т – период колебаний?

403. Пружинный маятник совершает гармонические колебания с амплитудой смещения 0,04 м. При смещении 0,03 м сила упругости равна Н. Определить потенциальную и кинетическую энергии, соответствующие данному смещению, и полную энергию маятника.

404. Определить максимальное ускорение материальной точки, совершающей гармонические колебания с амплитудой 15 см, если её наибольшая скорость равна 30 см/с. Написать уравнение колебаний, если начальная фаза равна 60о.

405. Максимальная скорость точки, совершающей гармонические колебания равна 10 см/с, максимальное ускорение 100 см/с2. Найти период и амплитуду колебаний.

406.Материальная точка массой 0,1 г совершает гармонические колебания с амплитудой 2 см и периодом 2 с. Начальная фаза колебаний равна нулю. Написать уравнение этих колебаний и определить максимальное значение скорости, а также максимальную силу, действующую на точку.

407. Материальная точка массой 20 г совершает колебания, уравнение которых имеет вид x = 0,3cos(), где смещение х – в метрах. Определить максимальные значения скорости и ускорения точки, полную механическую энергию точки и силу, действующую на точку в момент времени 2 с.

408. Материальная точка массой 0,01 кг совершает гармонические колебания, уравнение которых имеет вид х= 0,05sin6π t (смещение в сантиметрах, время в секундах). Найти возвращающую силу в момент времени t = 5 с, а также максимальную кинетическую энергию точки.

409. Найти максимальную кинетическую энергию материальной точки массой 2 г, совершающей гармонические колебания с амплитудой 4 см и частотой 5 Гц. Написать уравнение колебаний, если начальная фаза 30о.

410. Полная энергия тела, совершающего гармонические колебания, равна Дж. Амплитуда колебаний м. Определить смещение, при котором на тело действует сила Н, и максимальную силу.

411. Период затухающих колебаний 4 с, логарифмический декремент затухания 1,6, начальная фаза равна нулю. Смещение точки при равна 4,5 см. Написать уравнение колебаний точки и построить его график в пределах двух периодов.

412. Уравнение колебаний тела имеет вид Определить моменты времени, в которые смещение максимально; вычислить добротность колебательной системы.

413. К вертикальной спиральной пружине подвешен стальной шарик радиусом 2 см. Циклическая частота его колебаний в воздухе 5 с-1, а в некоторой жидкости – 4,06 с-1. Начальное смещение 5 см. Определить коэффициент вязкости жидкости, записать уравнение колебаний шарика.

414. Гиря массой 0,5 кг подвешена к спиральной пружине жёсткостью 20 Н/м. и совершает колебания в некоторой среде. Логарифмический декремент затухания равен 0,004. Определить число полных колебаний, через которое амплитуда колебаний уменьшится в 2 раза. Через какое время это произойдёт?

415. Чему равен логарифмический декремент затухания математического маятника, если за 1 минуту амплитуда колебаний уменьшилась в 2 раза? Длина маятника 1 м.

416. Коэффициент затухания успокоителя колебаний стрелки измерительного прибора равен 2с-1. Через один период амплитуда колебаний уменьшилась в два раза. Через сколько колебаний амплитуда составит 1 % от первоначальной?

417. Тело массой 1г совершает затухающие колебания с частотой 3,14 с-1. В течение 50 с тело потеряло 80 % своей механической энергии. Определить коэффициент затухания, коэффициент сопротивления среды и добротность системы.

418. Определить период затухающих колебаний, если период собственных колебаний системы равен 1с и логарифмический декремент затухания равен 0,628.

419. Логарифмический декремент затухания маятника равен 0,003. Определить число колебаний, которое должен сделать маятник, чтобы амплитуда уменьшилась в два раза.

420. За один период колебаний система теряет 97 % энергии. Во сколько раз изменится амплитуда колебаний за это время? За какое время амплитуда уменьшится в 10 раз, если частота колебаний равна 14 с-1?

421. Катушка с индуктивностью 30 мГн и резистор включены последовательно в цепь переменного тока с действующим значением напряжения 220 В и частотой 50 Гц. Найти сопротивление резистора и действующее значение напряжения на нем, если сдвиг фаз между колебаниями силы тока и напряжения .

422. В цепь переменного тока с действующим значением напряжения 220 В и частотой 50 Гц включены последовательно конденсатор электроемкостью 1 мкФ и реостат с активным сопротивлением 300 Ом. Найти полное сопротивление цепи и действующее значение силы тока.

423. В цепь переменного тока с действующим значением напряжения 220 В и частотой 50 Гц включены последовательно резистор сопротивлением 100 Ом, конденсатор электроемкостью 32 мкФ и катушка индуктивностью 640 мГн. Найти действующее значение силы тока, сдвиг фаз между силой тока и напряжением и потребляемую мощность.

424. Катушка длиной 50 см и площадью поперечного сечения 10 см2 включена в цепь переменного тока с частотой 50 Гц. Число витков катушки 3000. Найти активное сопротивление катушки, если сдвиг фаз между силой тока и напряжением 60°.

425. Переменное напряжение, действующее значение которого 220 В, а частота 50 Гц, подано на катушку без сердечника индуктивностью 31,8 мГн и активным сопротивлением 10 Ом. Найти количество теплоты, выделяющейся в катушке за одну секунду.

426. К зажимам генератора присоединен конденсатор электроемкостью 0,15 мкФ. Определить амплитудное значение напряжения на зажимах, если амплитудное значение силы тока 3,3 А, а частота тока составляет 5 кГц.

427. В катушке с активным сопротивлением 10 Ом при частоте переменного тока 50 Гц сдвиг фаз между колебаниями напряжения и силы тока равен 60о. Определить индуктивность катушки.

428. Электропечь, сопротивление которой 22 Ом, питается от генератора переменного тока. Определить количество теплоты, выделяемое печью за 1 час, если амплитуда силы тока 10 А.

429. Сила тока в колебательном контуре изменяется со временем по закону I = 0,02sin400 t (A). Индуктивность контура 0,5 Гн. Найти период собственных колебаний в контуре, электроемкость контура, максимальную энергию электрического и магнитного полей.

430. Колебательный контур состоит из конденсатора и катушки индуктивности. Определить частоту колебаний, возникающих в контуре, если максимальная сила тока в катушке индуктивности 1,2 А, максимальная разность потенциалов на обкладках конденсатора 1200 В, полная энергия контура 1,1 мДж.

431.Два одинаково направленных гармонических колебания с одина­ковой частотой и амплитудами 3 см и 5 см складываются в одно колеба­ние с амплитудой 7 см. Найти разность фаз складываемых колебаний.

432. Точка участвует в двух колебаниях одинакового периода с одинаковыми начальными фазами. Амплитуды колебаний 3 см и 4 см. Найти амплитуду результирующего колебания, если: 1) колебания совершаются в одном направлении; 2) колебания взаимно перпендикулярны.

433. Материальная точка участвует одновременно в двух взаимно перпендикулярных гармонических колебаниях, уравнения которых имеют вид х = sin(t /2), y = соs t. Найти уравнение траектории точки. Построить траекторию с соблюдением масштаба и указать направление движения точки.

434. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях х = sinπ t, y = 4sin(π t + π). Найти траекторию движения точки, построить ее с соблюдением масштаба.

435. Материальная точка участвует одновременно в двух взаимно перпендикулярных колебаниях, уравнения которых x = 3cos t, y = 2sin t. Найти траекторию точки, построить ее и указать направление движения точки.

436. Складываются два колебания одного направления с одинаковыми периодами, равными 1,5 с, и амплитудами, равными 2 см. Начальная фаза первого колебания равна , второго Определить амплитуду и начальную фазу результирующего колебания. Записать его уравнение и построить векторную диаграмму.

437. Движение точки задано уравнениями и . . Найти уравнение траектории. Вычислить скорость точки в момент времени 0,5 с.

438. Материальная точка участвует в двух колебаниях и Записать уравнение траектории, выражения для скорости и ускорения точки.

439. Смещение материальной точки по двум взаимно перпендикулярным направлениям описывается уравнениями и Записать уравнение траектории; найти зависимость линейной скорости от времени; вычислить максимальную скорость.

440. Складываются три колебания одного направления с одинаковыми периодами, равными 1,5 с; амплитудами, равными 3 см; фазами Построить векторную диаграмму положения амплитуд. Определить из чертежа амплитуду и начальную фазу результирующего колебания, записать его уравнение.

441. Уравнение плоской звуковой волны, распространяющейся вдоль оси х, имеет вид у = 60cos(1800 t – 5,3 x), где смещение у – в микрометрах. Определить длину волны, скорость распространения волны и максимальную скорость колебаний частиц среды.

442. Звуковые колебания, имеющие частоту 500 Гц и амплитуду 0,25 мм, распространяются в воздухе. Длина волны 70 см. Найти скорость распространения волны и максимальную скорость колебаний частиц воздуха.

443. Найти смещение от положения равновесия и скорость точки, отстоящей от источника колебаний на расстоянии l/12, для момента времени Т /6. Амплитуда колебания 0,05 м.

444. Плоская звуковая волна возбуждается источником колебаний частотой 200 Гц. Амплитуда колебаний источника равна 4 мм. Написать уравнение волны, если в начальный момент смещение точек максимально. Найти смещение точек среды на расстоянии 1 м от источника в момент времени 0,1 с. Скорость звуковой волны 300 м/с. Затуханием пренебречь.

445. В воздухе распространяется плоская акустическая волна со скоростью 340 м/с. Смещение точек волны описывается уравнением см. Определить длину волны, амплитуду колебаний, скорость колебаний молекул воздуха, интенсивность волны.

446. Плоская звуковая волна имеет период 3 мс, амплитуду 0,2 мм и длину волны 1,2 м. Для точек среды, находящихся от источника колебаний на расстоянии 2 м, найти: смещение, скорость, ускорение точек в момент 7 мс.

447. Входной контур радиоприемника состоит из катушки индуктивностью 2 мГн и плоского конденсатора с площадью пластин 10 см2 и расстоянием между ними 2 мм. Пространство между пластинами заполнено слюдой с диэлектрической проницаемостью 7. На какую длину волны настроен радиоприемник?

448. Резонанс в колебательном контуре с конденсатором электроемкостью 1 мкФ наступает при частоте 4000 Гц. Если параллельно первому конденсатору подключить второй конденсатор, то резонансная частота становится равной 2000 Гц. Определить электроемкость второго конденсатора.

449. В однородной изотропной немагнитной среде с диэлектрической проницаемостью равной 3 распространяется плоская электромагнитная волна. Амплитуда напряженности электрического поля волны 10 В/м. Найти амплитуду напряженности магнитного поля и фазовую скорость волны.

450. Плоская электромагнитная волна распространяется в вакууме. Амплитуда напряженности электрического поля волны 50 мВ/м. Найти амплитуду напряженности магнитного поля и среднее за период колебаний значение плотности потока энергии.

451. Расстояние от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной 1 см укладывается 10 темных интерференционных полос. Длина волны монохроматического света равна 0,7 мкм.

452. Установка для наблюдения колец Ньютона освещается монохроматическим светом с длиной волны 590 нм. Свет падает по нормали к поверхности пластины. Между линзой и пластинкой находится жидкость с показателем преломления 1,33. Определить толщину зазора в том месте, где в отраженном свете наблюдается третье светлое кольцо.

453. В опыте Юнга расстояние между щелями равно 0,8 мм, длина волны света 0,7 мкм. На каком расстоянии от щелей следует расположить экран, чтобы ширина интерференционной полосы оказалась равной 2 мм?

454. Радиус второго темного кольца Ньютона в отраженном свете равен 0,4 мм. Определить радиус кривизны плосковыпуклой линзы, взятой для опыта, если она освещается монохроматическим светом с длиной волны 0,5 мкм.

455. Расстояние между двумя когерентными источниками света равно 0,2 мм. Они удалены от экрана на расстояние 2 м. Найти длину волны, излучаемую когерентными источниками, если расстояние на экране между третьим и пятым минимумами интерференционной картины равно 1,2 см.

456. Между стеклянной пластиной и лежащей на ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны 0,5 мкм равен 0,85 мм. Радиус кривизны линзы равен 0,64 м.

457. В опыте Юнга на пути одного из лучей помещена тонкая стеклянная пластинка, вследствие чего центральная полоса сместилась в положение занятое 5-й светлой полосой (не считая центральной). Луч падает на пластинку перпендикулярно. Показатель преломления пластинки 1,5. Длина волны м. Какова толщина пластинки?

458. На стеклянную пластинку нанесен слой прозрачного вещества с показателем преломления 1,3. На пластинку падает нормально параллельный пучок монохроматического света с длиной волны 640 нм. Какую минимальную толщину должен иметь слой, чтобы отраженные лучи были максимально ослаблены в результате интерференции?

459. Входное окно фотоприемника покрыто тонкой пленкой, материал которой имеет показатель преломления 1,25. Толщина пленки равна 0,20 мкм. На какой наибольшей длине волны достигается максимальное просветление входного окна фотоприемника?

460. На пути одного из лучей в опыте Юнга поставлена трубка длиной 2 м с плоскопараллельными основаниями. При заполнении трубки хлором вся интерференционная картина на экране сместилась на 20 полос. Вычислить показатель преломления хлора, считая, что показатель преломления воздуха 1,000276. Длина волны 589 нм.

461. Точечный источник света с длиной волны 0,5 мкм расположен на расстоянии 1 м перед диафрагмой с круглым отверстием радиусом 1 мм. Найти расстояние от диафрагмы до точки наблюдения, находящейся на оси отверстия, для которой число зон Френеля в отверстии равно 3. Темное или светлое пятно получится в центре дифракционной картины, если в месте наблюдения поместить экран?

462. На щель шириной 0,1 мм нормально падает параллельный пучок света от монохроматического источника (длина волны равна 0,5 мкм). Определить ширину центрального максимума в дифракционной картине, наблюдаемой на экране, удаленном от щели на расстояние 3 м.

463. На дифракционную решетку, содержащую 250 штрихов на 1 мм, падает нормально свет с длиной волны 0,6 мкм. Найти общее число дифракционных максимумов, которые дает эта решетка. Определить угол, под которым наблюдается последний дифракционный максимум.

464. Диафрагма с круглым отверстием диаметром 2,4 ммрасположена на расстоянии 1 м от точечного источника света и 1,5 м от экрана. Длина волны источника света 0,6 мкм. Сколько зон Френеля укладывается в отверстии? Темное или светлое пятно получится в центре дифракционной картины?

465. Дифракционная решетка имеет такой период, что максимум первого порядка для длины волны 0,7 мкм соответствует углу 30о. Какова длина волны света, который в спектре второго порядка имеет максимум под углом 45о?

466. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние между атомными плоскостями равно 280 пм. Под углом 65° к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны рентгеновского излучения.

467. Какую разность длин волн может разрешить дифракционная решетка длиной 2 см и периодом 5 мкм в области красных лучей (длина волны 0,7 мкм) в спектре второго порядка? Сколько дифракционных максимумов можно наблюдать с помощью этой решетки в случае падения на решетку монохроматического света с длиной волны 0,7 мкм?

468. На дифракционную решетку, содержащую 600 штрихов на 1 мм, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину спектра первого порядка на экране, если расстояние от линзы до экрана 1,2 м. Границы видимого спектра составляют 0,4 мкм – 0,78 мкм.

469. Расстояние между атомными плоскостями кристалла кальцита равно 0,3 нм. Определить, при какой длине волны рентгеновского излучения второй дифракционный максимум будет наблюдаться при отражении лучей под углом 30° к поверхности кристалла.

470. На дифракционную решетку падает нормально параллельный пучок белого света. Спектры третьего и четвертого порядков частично накладываются друг на друга. На какую длину волны в спектре четвертого порядка, накладывается красная граница (длина волны 0,78 мкм) спектра третьего порядка?

471. Чему равен угол между плоскостями поляризации двух николей, если интенсивность естественного света, прошедшего через эту систему, уменьшилась в 5,4 раза? Считать, что каждый николь поглощает и отражает 14 % падающего на него света.

472. Угол максимальной поляризации при отражении света от кристалла каменной соли равен 60°. Определить скорость распространения света в этом кристалле.

473. Угол между плоскостями поляризации николей равен 30°. Интенсивность естественного света, прошедшего такую систему, уменьшилась в 5 раз. Пренебрегая потерей света при отражении, определить коэффициент поглощения света в каждом из николей, считая их одинаковыми.

474. Раствор сахара с концентрацией, равной 200 кг/м3, налитый в стеклянную трубку, поворачивает плоскость поляризации света, проходящего через раствор, на угол 45°. Другой раствор, налитый в такую же трубку, поворачивает плоскость поляризации на угол 30°. Определить концентрацию этого раствора.

475. Между двумя параллельными николями помещают кварцевую пластинку толщиной 1 мм, вырезанную параллельно оптической оси. При этом плоскость поляризации монохроматического света, падающего на поляризатор, повернулась на угол 20°. При какой минимальной толщине пластинки свет не пройдет через анализатор?

476. При прохождении естественного света через два николя, угол между плоскостями поляризации которых составляет 45°, происходит ослабление света. Коэффициенты поглощения света в поляризаторе и анализаторе соответственно равны 0,08 и 0,1. Найти, во сколько раз изменилась интенсивность света после прохождения этой системы.

477. Предельный угол полного внутреннего отражения луча на границе жидкости с воздухом равен 45°. Каким должен быть угол падения луча из воздуха на поверхность жидкости, чтобы отраженный луч был полностью поляризован?

478.Пластинку кварца толщиной d 1 = 2 мм, вырезанную перпендикулярно оптической оси, поместили между параллельными николями, в результате чего плоскость поляризации света повернулась на угол = 53о. Определить толщину d 2 пластинки, при которой данный монохроматический свет не проходит через анализатор.

479. Между двумя николями установлена кварцевая пластинка толщиной 1 мм. Какой угол между главными плоскостями николей нужно установить, чтобы интенсивность света после прохождения через николи уменьшилась в 10 раз? Поглощением света в николях и кварцевой пластинке пренебречь. Постоянная вращения кварца равна 27 град/мм.

480. Луч света переходит из воды в алмаз так, что луч, отраженный от границы раздела этих сред, оказывается максимально поляризованным. Определить угол между падающим и преломленным лучами.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: