Масштабирование изображений




ЛЕКЦИЯ: ГРАФИЧЕСКИЕ ПРОЦЕССОРЫИ РЕДАКТОРЫ

ПОНЯТИЯ КОМПЬЮТЕРНОЙ ГРАФИКИ

Компьютерная графика представляет собой одну из современных технологий создания различных изображений с помощью аппаратных и программных средств компь­ютера, отображения их на экране монитора и затем сохранения в файле или печати на принтере. Существует два способа представления графических изображении: растро­вый и векторный.

Растровое изображение представляет набор точек, расположенных на сетчатом поле-канве. Каждая точка может принимать различные цвета, по минимуму черный и бе­лый цвет. Область применения- обработка фотографий, рисунков, отсканированных изо­бражений и пр. Достоинством данного вида изображений является возможность передачи большого количества информации (фотографии). Недостатком является большое коли­чество памяти, необходимой для хранения изображения. Для решения этой проблемы применяются способ сжатия изображений с помощью специальных форматов хранения данных (jpg, gif и пр.). К программам работы с растровой графикой относятся: Adobe Photoshop, Corel PhotoPaint, Ms Paint (текстовый редактор).

Векторное изображение представляет набор действий по созданию рисунка с по­мощью различных линий, фигур, команд заполнения цветом и других команд. Область применения- создание схем, чертежей, рекламных плакатов и пр. Достоинство данного типа - малый объем памяти, занимаемый рисунком. Недостаток - искусственность изо­бражения, состоящее из набора примитивов. Основные программы: Corel Draw, Visio, AutoCad, Arhicad.

Принципы работы в данных программах аналогичны действиям в текстовых и табличных процессорах. При создании нового документа- рисунка необходимо с помощью набора инструментов (кисть, карандаш, ластик, фигуры и линии, распылители и пр.) соз­дать рисунок, как если бы его делали в альбоме. При этом часто можно применять раз­личные команды преобразования, фильтрации и применения различных эффектов с по­мощью команд в главном меню. Конкретные команды можно изучить используя справоч­ную систему в необходимой для работы программе.

Растровая графика

Наиболее просто реализовать растровое представление изображения. Растр, или растровый массив (bitmap), представляет совокупность битов, расположенных на сетчатом поле-канве. Бит может быть вклю­чен (единичное состояние) или выключен (нулевое состояние). Со­стояния битов можно использовать для представления черного или белого цветов, так что, соединив на канве несколько битов, можно создать изображение из черных и белых точек.

Растровое изображение напоминает лист клетчатой бумаги, на котором каждая клеточка закрашена черным или белым цветом, в совокупности формируя рисунок, как показано на рис. 1.

Основным элементом растрового изображения является пиксель (pixel). Под этим термином часто понимают несколько различных по­нятий: отдельный элемент растрового изображения, отдельная точка на экране монитора, отдельная точка на изображении, напечатанном принтером. Поэтому на практике эти понятия часто обозначают так:

- пиксель — отдельный элемент растрового изображения;

- видеопиксель элемент изображения на экране монитора;

- точка — отдельная точка, создаваемая принтером или фотонаборным автоматом.

Цвет каждого пикселя растрового изображения — черный, белый, серый или любой из спектра — запо­минается с помощью комбинации битов. Чем больше битов используется для этого, тем большее количе­ство оттенков цветов для каждого пикселя можно получить. Число битов, используемых компьютером для хранения информации о каждом пикселе, называется битовой глубиной или глубиной цвета.

Наиболее простой тип растрового изображения состоит из пикселей, имеющих два возможных цвета — черный и белый. Для хранения такого типа пикселей требуется один бит в памяти компьютера, поэтому изображения, состоящие из пикселей такого вида, называются 1-битовыми изображениями. Для отображе­ния большего количества цветов используется больше битов информации. Число возможных и доступных цветов или градаций серого цвета каждого пикселя равно двум в степени, равной количеству битов, отво­димых для каждого пикселя. 24 бита обеспечивают более 16 миллионов цветов. О 24-битовых изображе­ниях часто говорят как об изображениях с естественными цветами, так как такого количества цветов более чем достаточно, чтобы отобразить всевозможные цвета, которые способен различать человеческий глаз.

Основной недостаток растровой графики состоит в том, что каждое изображение для своего хранения требует большое количество памяти. Простые растровые картинки, такие как копии экрана компьютера или черно-белые изображения, занимают до нескольких сотен килобайтов памяти. Детализированные высоко­качественные рисунки, например, сделанные с помощью сканеров с высокой разрешающей способностью занимают уже десятки мегабайтов. Для разрешения проблемы обработки объемных (в смысле затрат па­мяти) изображений используются два основных способа:

• увеличение памяти компьютера;

• сжатие изображений.

Другим недостатком растрового представления изображений является снижение качества изображений при масштабировании.

Векторная графика

Векторное представление, в отличие от растровой графики, определяет описание изображения в виде линий и фигур, возможно, с закрашенными областями, заполняемыми сплошным или градиентным цветом. Хотя это может показаться более сложным, чем использование растровых массивов, но для многих видов изображений использование математических описаний является более простым способом.

В векторной графике для описания объектов используются комбинации компьютерных команд и ма­тематических формул для описания объектов. Это позволяет различным устройствам компьютера, таким как монитор и принтер, при рисовании этих объектов вычислять, где необходимо помещать реальные точки. Векторную графику часто называют объектно-ориентированной или чертежной графикой. Имеется ряд простейших объектов, или примитивов, например: эллипс, прямоугольник, линия. Эти примитивы и их ком­бинации используются для создания более сложных изображений. Если посмотреть содержание файла векторной графики, обнаруживается сходство с программой. Он может содержать команды, похожие на. слова, и данные в коде ASCII, поэтому векторный файл можно отредактировать с помощью текстового ре­дактора. Приведем в условном упрощенном виде команды, описывающие окружность:

объект — окружность;

центр — 50, 70;

радиус — 40;

линия: цвет — черный, толщина — 0.50;

заливка — нет.

Данный пример показывает основное достоинство векторной графики — описание объекта является простым и занимает мало памяти. Для описания этой же окружности средствами растровой графики потре­бовалось бы запомнить каждую отдельную точку изображения, что заняло бы гораздо больше памяти. Кроме того, векторная графика в сравнении с растровой имеет следующие преимущества:

простота масштабирования изображения без ухудшения его качества;

независимость объема памяти, требуемой для хранения изображения, от выбранной цветовой моде­ли.

Недостатком векторных изображений является их некоторая искусственность, заключающаяся в том, что любое изображение необходимо разбить на конечное множество составляющих его примитивов.

Растровая и векторная графика существуют не обособлено друг от друга. Так, векторные рисунки могут включать в себя и растровые изображения. Кроме того, векторные и растровые изображения могут быть преобразованы друг в друга — в этом случае говорят о конвертации графических файлов в другие форма­ты. Достаточно просто выполняется преобразование векторных изображений в растровые. Не всегда осу­ществимо преобразование растровой графики в векторную, так как для этого растровая картинка должна содержать линии, которые могут быть идентифицированы программой конвертации (типа CoreiTrace в со­ставе пакета CorelDraw) как векторные примитивы. Это касается, например, высококачественных фото­графий, когда каждый пиксель отличается от соседних.

 

 

Разрешающая способность

Разрешающая способность — это количество элементов в заданной области. Этот термин применим ко многим понятиям, например, таким как:

разрешающая способность графического изображения;

разрешающая способность принтера как устройства вывода;

разрешающая способность мыши как устройства ввода.

Например, разрешающая способность лазерного принтера может быть задана 300 dpi (dot per inche — точек на дюйм), что означает способность принтера напечатать на отрезке в один дюйм 300 отдельных то­чек. В этом случае элементами изображения являются лазерные точки, а размер изображения измеряется в дюймах.

Разрешающая способность графического изображения измеряется в пикселях на дюйм. Отметим, что пиксель в компьютерном файле не имеет определенного размера, так как хранит лишь информацию о своем цвете. Физический размер пикселя приобретает при отображении на конкретном устройстве вывода, напри­мер, на мониторе или принтере.

Разрешающая способность технических устройств по-разному влияет на вывод векторной и растровой графики.

Так, при выводе векторного рисунка используется максимальное разрешение устройства вывода. При этом команды, описывающие изображение, сообщают устройству вывода положение и размеры какого-либо объекта, а устройство для его прорисовки использует максимально возможное количество точек. Та­ким образом, векторный объект, например, окружность, распечатанная на принтерах разного качества, имеет на листе бумаги одинаковые положение и размеры. Однако более гладко окружность выглядит при печати на принтере с большей разрешающей способностью, так как состоит из большего количества точек принтера.

Значительно большее влияние разрешающая способность устройства вывода оказывает па вывод рас­трового рисунка. Если в файле растрового изображения не определено, сколько пикселей на дюйм должно создавать устройство вывода, то по умолчанию для каждого пикселя используется минимальный размер В случае лазерного принтера минимальным элементом служит лазерная точка, в мониторе — видеопиксель. Так как устройства вывода отличаются размерами минимального элемента, который может быть ими соз­дан, то размер растрового изображения при выводе на различных устройствах также будет неодинаков.

 

Масштабирование изображений

 

Масштабирование заключается в изменении вертикального и горизонтального размеров изображения. Масштабирование может быть пропорциональным — в этом случае соотношение между высотой и шири­ной рисунка не изменяется, а меняется общий размер, и непропорциональным — в этом случае оба изме­рения изменяются по-разному.

Масштабирование векторных рисунков выполняется просто и без потери качества. Так как объекты векторной графики создаются по их описаниям, то для изменения масштаба векторного объекта, достаточ­но изменить его описание. Например, чтобы увеличить в два раза векторный объект, следует удвоить зна­чение, описывающее его размер.

Масштабирование растровых рисунков является намного более сложным процессом, чем для век­торной графики, и часто сопровождается потерей качества. При изменении размеров растрового изобра­жения выполняется одно из следующих действий:

•одновременное изменение размеров
всех пикселей (в большую или меньшую сторону);

•добавление или убавление пикселей из
рисунка для отражения производимых в
нем изменений, называемое выборкой
пикселей в изображении.

Простейший способ изменения мас­штаба растрового рисунка состоит в изме­нении размера всех его пикселей. Так как внутри самого рисунка пиксели не имеют размера и приобретают его уже при выво­де на внешнее устройство, то изменение размера пикселей растра в сильной степе­ни похоже на масштабирование векторных объектов — необходимо сменить только описание пикселя, а остальное выполнит устройство вывода.

 

Устройство вывода для создания пикселя определенного физического размера использует столько сво­их минимальных элементов (лазерных точек — для лазерного принтера, видеопикселей — для монитора), сколько сможет. При масштабировании изображения количество входящих в него пикселей не меняется, а изменяется количество создаваемых устройством вывода элементов, идущих на построение отдельного пикселя изображения. На рис. 2 показан пример масштабирования растрового изображения — увеличения его в два раза по каждому измерению.

Выборка растрового рисунка может быть сделана двумя различными способами.

По первому способу просто дублируется или удаляется необходимое количество пикселей. При этом в результате масштабирования, как правило, ухудшается качество изображения. Например, при увеличении размера рисунка возрастают его зернистость и дискретность. При уменьшении размера рисунка потери в качестве не столь заметны, однако при последующей восстановлении уменьшенного рисунка до прежнего размера опять возрастают зернистость и дискретность. Это связано с тем, что при уменьшении размера рисунка часть пикселей была удалена из исходного изображения и потеряна безвозвратно, а при после­дующем восстановлении размеров рисунка недостающие пиксели дублировались из соседних.

По второму способу с помощью определенных вычислений можно создать пиксели другого цвета, оп­ределяемого цветами первоначального пикселя и его окружения. Этот метод называется интерполяцией и является более сложным, чем простое дублирование. При интерполяции кроме дублируемых пикселей, отбираются и соседние с ними, с помощью которых вновь создаваемые пиксели получают от существую­щих усредненный цвет или оттенок серого. В результате переходы между пикселями становятся более плавными, что позволяет убрать или уменьшить эффект «пилообразного» изображения.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: