Неорганические вещества клетки




Химический состав клетки

Химический состав клетки включает как неорганические, так и органические вещества.

В при­ро­де можно встре­тить боль­шое раз­но­об­ра­зие кле­ток (рис. 1). Они от­ли­ча­ют­ся по раз­ме­ру, функ­ци­ям, форме, яв­ля­ют­ся сво­бод­но­жи­ву­щи­ми или же вхо­дят в со­став мно­го­кле­точ­ных ор­га­низ­мов, но при всем этом раз­но­об­ра­зии все они со­сто­ят из одних и тех же типов хи­ми­че­ских ве­ществ, пре­тер­пе­ва­ю­щих оди­на­ко­вые пре­вра­ще­ния.

Живую клет­ку от­ли­ча­ют две важ­ные осо­бен­но­сти:

1. Вы­со­кое со­дер­жа­ние воды.

2. Боль­шое ко­ли­че­ство слож­ных ор­га­ни­че­ских ве­ществ.

В живой клет­ке можно встретить различные химические элементы. Уче­ные под­счи­та­ли, что в клет­ке со­дер­жит­ся более 70 хи­ми­че­ских эле­мен­тов, то есть более по­ло­ви­ны всех су­ще­ству­ю­щих, толь­ко 24 из них по­сто­ян­но встре­ча­ют­ся в раз­лич­ных типах кле­ток. По ко­ли­че­ству эле­мен­ты, со­дер­жа­щи­е­ся в клет­ках, де­лят­ся на мак­ро- и мик­ро­эле­мен­ты.

Мак­ро­эле­мен­ты встре­ча­ют­ся в клет­ках в боль­шом ко­ли­че­стве. К ним от­но­сят­ся кис­ло­род, уг­ле­род, во­до­род, азот, сера, же­ле­зо, фос­фор, каль­ций, калий и так далее. Мик­ро­эле­мен­ты пред­став­ле­ны в клет­ках в неболь­шом ко­ли­че­стве, это такие эле­мен­ты, как мар­га­нец, медь, селен, ко­бальт, цинк, йод, ни­кель и так далее. Несмот­ря на очень малое со­дер­жа­ние, мик­ро­эле­мен­ты иг­ра­ют важ­ную роль, так как вли­я­ют на обмен ве­ществ в клет­ке. Кроме мак­ро- и мик­ро­эле­мен­тов, вы­де­ля­ют еще груп­пу уль­тра­мик­ро­эле­мен­тов, ко­то­рые со­став­ля­ют менее одной мил­ли­он­ной про­цен­та в ор­га­низ­мах живых су­ществ. К ним, на­при­мер, от­но­сят­ся зо­ло­то и се­реб­ро, ко­то­рые ока­зы­ва­ют бак­те­ри­цид­ное воз­дей­ствие. Ртуть по­дав­ля­ет об­рат­ное вса­сы­ва­ние воды в по­чеч­ных ка­наль­цах, ока­зы­вая воз­дей­ствие на фер­мен­ты. Также к уль­тра­мик­ро­эле­мен­там от­но­сят пла­ти­ну и цезий. Неко­то­рые к этой груп­пе от­но­сят и селен, при его недо­стат­ке раз­ви­ва­ют­ся ра­ко­вые за­бо­ле­ва­ния. Про­цент­ное со­дер­жа­ние в ор­га­низ­ме того или иного эле­мен­та ни в коем слу­чае не ха­рак­те­ри­зу­ет сте­пень его важ­но­сти и необ­хо­ди­мо­сти в ор­га­низ­ме.

Мно­гие мик­ро­эле­мен­ты вхо­дят в со­став био­ло­ги­че­ски ак­тив­ных ве­ществ: фер­мен­тов, ви­та­ми­нов, на­при­мер, ко­бальт вхо­дит в со­став ви­та­ми­на B12, а также гор­мо­нов. Они ока­зы­ва­ют вли­я­ние на рост и раз­ви­тие ор­га­низ­мов, кро­ве­тво­ре­ния (же­ле­зо и медь), про­цес­сы кле­точ­но­го ды­ха­ния (медь, цинк) и так далее.

Эти 70 эле­мен­тов в со­ста­ве клет­ки об­ра­зу­ют ты­ся­чи хи­ми­че­ских ве­ществ, ко­то­рые можно раз­де­лить на две боль­шие груп­пы. Это неор­га­ни­че­ские и органические вещества, вхо­дя­щие в со­став клет­ки. Неор­га­ни­че­ские ве­ще­ства – это вода, ми­не­раль­ные соли, уг­ле­кис­лый газ, раз­лич­ные кис­ло­ты и ос­но­ва­ния. Вода яв­ля­ет­ся важ­ней­шим ком­по­нен­том со­дер­жи­мо­го живой клет­ки, она со­став­ля­ет в сред­нем около 70 % ее массы. Вода при­да­ет клет­ке упру­гость и объем, обес­пе­чи­ва­ет по­сто­ян­ство ее со­ста­ва, участ­ву­ет в хи­ми­че­ских ре­ак­ци­ях и в по­стро­е­нии хи­ми­че­ских мо­ле­кул, де­ла­ет воз­мож­ным про­те­ка­ние всех про­цес­сов жиз­не­де­я­тель­но­сти клет­ки. Вода яв­ля­ет­ся уни­вер­саль­ным рас­тво­ри­те­лем всех ве­ществ, по­сту­па­ю­щих в клет­ку, и тех, ко­то­рые из нее вы­во­дят­ся. Ми­не­раль­ные соли со­став­ля­ют при­мер­но от 1 до 1,5 % от общей массы клет­ки, но роль, ко­то­рую они вы­пол­ня­ют, очень важна. В рас­тво­рен­ном виде ми­не­раль­ные соли пред­став­ля­ют собой необ­хо­ди­мую среду для хи­ми­че­ских про­цес­сов, ко­то­рые про­те­ка­ют в клет­ке.

В клет­ках можно встре­тить много раз­ных солей. Жи­вот­ные их из­бы­ток вы­во­дят с по­мо­щью вы­де­ли­тель­ной си­сте­мы. А у рас­те­ний они на­кап­ли­ва­ют­ся и кри­стал­ли­зу­ют­ся в раз­лич­ных ор­га­но­и­дах или ва­ку­о­лях, чаще всего это бы­ва­ет соль и каль­ций. Их форма в клет­ках рас­те­ний может быть раз­лич­ной: иглы, ромбы, кри­стал­ли­ки, оди­но­кие или срос­ши­е­ся вме­сте, так на­зы­ва­е­мые друзы. Ор­га­ни­че­ские ве­ще­ства клет­ки на­зы­ва­ют так по­то­му, что впер­вые вы­де­ле­ны они были имен­но из ор­га­низ­мов. К ним от­но­сят­ся такие ве­ще­ства, как белки, ли­пи­ды (или жиры), углеводы и нук­ле­и­но­вые кис­ло­ты.

Ор­га­ни­че­ская химия – это химия со­еди­не­ния та­ко­го уди­ви­тель­но­го эле­мен­та, как уг­ле­род. Его уди­ви­тель­ность и уни­каль­ность в том, что мно­го­чис­лен­ные пре­вра­ще­ния мо­ле­кул и об­ра­зо­ва­ние раз­лич­ных круп­ных и даже ги­гант­ских мо­ле­кул ор­га­ни­че­ских со­еди­не­ний про­ис­хо­дит бла­го­да­ря тому, что уг­ле­род, бу­дучи че­ты­рех­ва­лент­ным, спо­со­бен объ­еди­нять­ся в длин­ные цепи и за­мкну­тые коль­це­вые струк­ту­ры. Неко­то­рые малые мо­ле­ку­лы могут со­еди­нять­ся между собой и об­ра­зу­ют круп­ные мо­ле­ку­лы – по­ли­ме­ры (от гре­че­ско­го слова polis – «мно­го­чис­лен­ный» и meros – «часть, доля»).

 

 

Неорганические вещества клетки

 

Значительная часть соединений, входящих в состав клетки, встречается в больших количествах только в живой природе. Это органические вещества. Однако есть соединение, которое одинаково характерно как для живой, так и для неживой природы. Это вода.

Вода. Считается, что миллиарды лет тому назад в первичном океане на нашей планете зародилась жизнь и вся дальнейшая эволюция природы была неразрывно связана с водой. Уникальные свойства этой относительно небольшой молекулы позволили нашей планете стать такой, какая она есть сейчас. Все жители Земли, растения и животные, грибы и бактерии, обязаны воде жизнью. В чем же заключается особенность этого вещества?

Молекула воды – это диполь, т. е. на одной стороне молекулы сосредоточен положительный заряд, а на другом конце – отрицательный. Именно эта особенность строения молекулы воды определяет ее свойство универсального растворителя. Любые вещества, имеющие заряженные группы, растворяются в воде. Такие соединения называют гидрофильными (от греч. hydros – вода и phileo – люблю). Большинство веществ, присутствующих в клетке, относится к этой группе, например соли, аминокислоты, сахара, белки, простые спирты. Когда вещество переходит в раствор, его реакционная способность увеличивается. Однако есть соединения, которые в воде растворяются очень плохо или вовсе не растворяются. Такие вещества называют гидрофобными (от греч. hydros – вода и phobos – страх), к ним относятся, в частности, жиры (липиды), жироподобные вещества (липоиды), полисахариды и некоторые белки. Большинство процессов, которые протекают внутри клетки, могут осуществляться только в водной среде. Но вода не только обеспечивает условия химических реакций, она сама участвует во многих метаболических процессах. В реакциях гидролиза[1] белки расщепляются до аминокислот, а крахмал – до глюкозы. Высвобождение энергии в организме происходит при взаимодействии с водой главной энергетической молекулы – АТФ. Вода участвует в реакциях фотосинтеза и в синтезе АТФ в митохондриях.

Отрицательные и положительные полюсы разных молекул воды притягиваются друг к другу, что приводит к образованию водородных связей. Наличие этих связей придает воде структурированность, что объясняет многие ее необычные свойства: высокую температуру кипения, плавления, высокую теплоемкость.

Сочетание высокой теплоемкости и теплопроводности делает воду идеальной жидкостью для поддержания теплового равновесия. Тепло быстро и равномерно распределяется между всеми частями организма.

Высокая интенсивность испарения приводит к быстрой потере тепла и предохраняет от перегрева: испарение у растений и потоотделение у животных являются защитными реакциями и позволяют при минимальной потере воды существенно снизить температуру тела.

Практически полная несжимаемость воды обеспечивает поддержание формы клетки, а вязкость придает воде свойства смазки.

 

Высокая сила поверхностного натяжения воды обеспечивает восходящий и нисходящий транспорт веществ в растениях и движение крови в капиллярах. Многие мелкие организмы легко удерживаются и передвигаются по поверхности воды, благодаря наличию пленки поверхностного натяжения.

 

Органические вещества. Общая характеристика. Липиды

Общая характеристика органических веществ. Среди всех химических элементов есть один, который наиболее тесно связан с живыми организмами. Это углерод. Везде, где его находят, есть или когда-то была жизнь. Известно уже более миллиона различных молекул, построенных на его основе. Наиболее интересна уникальная способность атомов углерода вступать в ковалентную связь друг с другом, образуя длинные цепи, сложные кольца и иные структуры. Органические вещества – это сложные углеродсодержащие соединения. Прежде считали, что только живые организмы способны их синтезировать. Однако сейчас путем химического синтеза уже получено огромное количество органических соединений.

Простейшие углеродные соединения – это углеводороды, молекулы которых состоят из атомов только углерода и водорода. Самый простой углеводород – метан. В ранний период истории Земли метан входил в состав ее первичной атмосферы. Возможно, именно он и положил начало бесчисленному разнообразию углеродсодержащих соединений, которые возникали по мере развития жизни и которые сейчас являются основой жизни.

В современных живых организмах углеводороды встречаются нечасто.

Сорок атомов углерода входит в состав углеводорода каротина – оранжево-желтого пигмента. Богаты каротином плоды шиповника и смородины, морковь и томаты, яичный желток. Очень важен для полноценного питания животных и человека (?-каротин – провитамин А, который в организме превращается в витамин А.

Однако подавляющее большинство органических соединений устроено гораздо более сложно, нежели углеводороды.

Органические вещества живой природы чрезвычайно разнообразны по своим размерам, строению и функциям. Поэтому создать единую классификацию, которая учитывала бы все характерные особенности каждого соединения, практически невозможно. Наиболее распространено деление всех органических соединений на низкомолекулярные (аминокислоты, липиды, органические кислоты и др.) и высокомолекулярные, или биополимеры. Полимеры – это молекулы, состоящие из повторяющихся структурных единиц – мономеров. В свою очередь все биополимеры подразделяют на две группы: гомополимеры, или регулярные, построенные из мономеров одного типа (например, гликоген, крахмал и целлюлоза состоят из молекул глюкозы), и гетерополимеры, или нерегулярные, в состав которых входят отличающиеся друг от друга мономеры (например, белки состоят из 20 типов аминокислот, а нуклеиновые кислоты – из 8 типов нуклеотидов, см. § 2.5, 2.6).

Рассмотрим наиболее важные группы органических соединений, которые определяют основные свойства клеток и организмов (рис. 9).

Липиды. Среди низкомолекулярных органических соединений, входящих в состав живых организмов, важную роль играют липиды, к которым относятся жиры, воски и разнообразные жироподобные вещества. Это гидрофобные соединения, не растворимые в воде. Общее содержание липидов в клетке колеблется в пределах 5–15 % от массы сухого вещества. В клетках подкожной жировой клетчатки их количество возрастает до 90 %.

 

Широко распространены в природе нейтральные жиры, которые представляют собой соединения высокомолекулярных жирных кислот и трехатомного спирта глицерина. В цитоплазме клеток жиры откладываются в виде жировых капель.

Жиры являются источником энергии. При окислении 1 г жира до углекислого газа и воды выделяется 38,9 кДж энергии (при окислении 1 г глюкозы – всего 17 кДж).

Жиры служат источником метаболической воды, из 1 г жира образуется 1,1 г воды. Используя свои жировые запасы, верблюды или впадающие в зимнюю спячку суслики могут обходиться без воды длительное время.

Жиры, в основном, откладываются в клетках жировой ткани. Эта ткань служит энергетическим депо организма, предохраняет его от потери тепла и выполняет защитную функцию. В полости тела между внутренними органами у позвоночных животных формируются упругие жировые прокладки, которые защищают органы от повреждений, а подкожная жировая клетчатка создает теплоизоляционный слой.

 

Воски – пластичные вещества, обладающие водоотталкивающими свойствами. У насекомых они служат материалом для постройки сот. Восковой налет на поверхности листьев, стеблей, плодов защищает растения от механических повреждений, ультрафиолетового излучения и играет важную роль в регуляции водного баланса.

Не менее важное значение в организме имеют жироподобные вещества. Представители этой группы – фосфолипиды формируют основу всех биологических мембран. По своей структуре фосфолипиды сходны с жирами, но в их молекуле один или два остатка жирных кислот замещены остатком фосфорной кислоты.

Важную роль в жизнедеятельности всех живых организмов, особенно животных, играет жироподобное вещество – холестерин. В корковом слое надпочечников, в половых железах и в плаценте из него образуются стероидные гормоны (кортикостероиды и половые гормоны). В клетках печени из холестерина синтезируются желчные кислоты, необходимые для нормального переваривания жиров.

К жироподобным веществам относят также жирорастворимые витамины A, D, Е, К, обладающие высокой биологической активностью.

 

Прокариотические и эукариотические клетки.

 

К прокариотам относят наиболее просто устроенные формы клеточных организмов. ДНК прокариот образует одну двойную спиралевидную нить. Эта нить замкнута в кольцо и называют её нуклеоидом. Кольцевидная нить ДНК состоит из значительного числа генов, но так как нить ДНК единственная, то существует одна группа сцепления.

Основные признаки прокариот.

1. Кольцевидная ДНК сосредоточена в центральной части клетки, не отделена ядерной оболочкой от остальной части клетки.

2. Внутренние мембраны встречаются редко.

3. Органелл мало, ни одна из них не имеет двойной мембраны. Есть рибосомы, они мелкие и находятся в цитоплазме.

4. Отсутствуют митохондрии – дыхание протекает на складчатых впячиваниях наружной цитоплазматической мембраны — мезосомах. В мезосомах адсорбированы ферменты, ведущие процесс дыхания.

5. Отсутствуют пластиды. Процесс фотосинтеза у аутотрофных прокариот протекает на мешковидных впячиваниях наружной цитоплазматической мембраны, где адсорбируются пигменты, участвующие в процессе фотосинтеза.

6. Отсутствуют хромосомы.

7. Нет центриолей, эндоплазматического ретикулюма.

8. Клеткам прокариот не свойствен мейоз и митоз. Деление клеток осуществляется путем амитоза.

9. Настоящий половой процесс не обнаружен, гаметы не образуются.

10. Способны к фиксации азота.

Организмы относящиеся к прокариотам.

1. Эубактерии. К ним относятся сине-зелёные бактерии. Имеют двухслойные липопротеидные мембраны. Возраст 3,8 млрд. лет.

2. Архебактерии (Метанобразующие бактерии, бактерии солоноватых водоёмов, возраст 2,8 млрд. лет. Имеют однослойные липидные мембраны).

3. Бактерии. В настоящее время известно около 3000 видов бактерий.

Бактерии существовали около 3 млрд. лет назад. Они играли огромную роль в создании современного состава атмосферы, в изменении облика Земли.

4. Сине-зелёные водоросли. К ним относятся 1400 современных видов. Сине-зелёные замечательны тем, что способны использовать азот воздуха и превращать его в органические формы азота. Сине-зелёные представлены одноклеточными, колониальными и многоклеточными формами. Это древнейшие организмы Земли. Возраст их не менее 2,8 млрд. лет.

Подимперия мезокариот. Сюда относятся представители единственного типа панцирные жгутиконосцы – динофлагелляты. В отличие от прокариот у них имеется обособленное ядро. В отличие от эукариот молекулы ДНК замкнуты в кольцо. Длинные параллельно идущие кольца нитевидной ДНК могут скручиваться наподобие жгутиков, образуя подобие хромосом. Появляется митоз. Мезокариоты не являются предками эукариот. Это боковая ветвь эволюции.

Эукариоты

К эукариотам относятся царства растений, животных, грибов.

Основные признаки эукариот.

1. Клетка разделена на цитоплазму и ядро.

2. Большая часть ДНК сосредоточена в ядре. Именно ядерная ДНК отвечает за большую часть процессов жизнедеятельности клетки и за передачу наследственности дочерним клеткам.

3. Ядерная ДНК расчленена на нити, не замкнутые в кольца.

4. Нити ДНК линейно вытянуты внутри хромосом, отчетливо видны в процессе митоза. Набор хромосом в ядрах соматических клеток диплоидный.

5. Развита система наружных и внутренних мембран. Внутренние делят клетку на отдельные отсеки – компартменты. Принимают участие в образовании органоидов клетки.

6. Органоидов много. Некоторые органоиды окружены двойной мембраной: ядро, митохондрии, хлоропласты. В ядре, наряду с оболочкой и ядерным соком, обнаруживается ядрышко и хромосомы. Цитоплазма представлена основным веществом (матриксом, гиалоплазмой) в которой распределены включения и органеллы.

7. Большое число органелл ограничено одинарной мембранной (лизосомы, вакуоли и т.д.)

8. В эукариотической клетке выделяют органеллы общего и специального значения. Например: общего значения – ядро, митохондрии, ЭПС и т.д.; специального значения — микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов.

9. Характерен митоз – механизм воспроизведения в поколениях генетически сходных клеток.

10. Свойствен половой процесс. Образуются истинные половые клетки – гаметы.

11. Не способны к фиксации свободного азота.

12. Аэробное дыхание происходит в митохондриях.

13. Фотосинтез проходит в хлоропластах содержащих мембраны, которые обычно уложенные в граны.

14. Эукариоты представлены одноклеточными, нитчатыми и истинно многоклеточными формами.

 

 

Вирусы как неклеточная форма жизни и их значение. Борьба с вирусными заболеваниями.

Вирусы — неклеточные формы жизни. Они были открыты в 1892 году русским ученым Д. И. Ивановским. Вирусы очень мелких размеров, примерно в 50 раз меньше бактерий. Разглядеть их с помощью светового микроскопа практически невозможно. Размножаются вирусы только в клетках растений, животных и человека, вызывая различные заболевания.

Вирусы имеют очень простое строение и состоят из нуклеиновой кислоты и белковой оболочки и скорее напоминают частицу, нежели клетку. Вне клеток хозяина вирусная частица не проявляет никаких признаков жизни: не питается, не дышит, не растет, не размножается. Но, проникнув в клетку, вирус «подчиняет* ее себе, заставляет вырабатывать новые вирусные частицы, что приводит клетку к гибели, а освободившиеся вирусные частицы заражают новые клетки.

Являясь паразитами, вирусы вызывают у своих хозяев те или иные заболевания: у растений — листовую мозаику, задержки роста, что приводит к снижению урожая. К серьезным заболеваниям животных можно отнести ящур крупного рогатого скота, рожистое воспаление у свиней, чуму птиц и миксоматоз у кроликов. Вирусами вызываются многие болезни человека — грипп, корь, краснуха, свинка, оспа, полиомиелит и др.

Вместе с тем есть вирусы, которые поражают некоторые бактерии. Их называют бактериофагами или просто фагами. Изучением вирусов занимается наука вирусология. Более детальное знакомство с живыми существами мы начнем с царства дробянки.

тобы от кашлять мокроту такие, использование щелочных жидкостей: Коралловую воду Алка Майн и Микрогидрин, которые обладают мощным щелочным эффектом. Ну и очистка организма, начиная с кишечника — проверено и признано на мировом уровне, как одна из лучших в мире систем очистки организма.

Потребляя микрогидрин, коралловую воду и гидросель в «первые часы» начала заболевания пока вирусная инфекция находиться в верхних дыхательных путях и не попала в нижние, а тем более не переросла в кишечную результат будет мгновенным и ее можно остановить.

Итак, в заключении, как только попалась инфекция в наш организм, а чувствуем мы это тем, что начинаем чихать и повышается сопливость, нужно дать нашему организму «прочихаться» и прокашляться. Наш организм пытается избавиться от вирусов, ему нужно будет помочь.


Любимый и эффективный рецепт моей сестренки, я правда на себе не испытывал это капельки каланхое в нос несколько раз, которое вызывает сильное чиханье, пока вся «зараза» не выйдет. На первых стадиях действует очень хорошо, проверено. Помните, инкубационный период вируса гриппа 6 часов – вот вам и срок. Ну, а если запустили дальше в свой организм вирусную инфекцию, знайте, тут уже нужно будет лечить и очищать и нижние органы дыхания и кишечник, от этого лучше конечно предохраняться профилактикой.


Думаю, элементарные и простые приемы профилактики, очистки организмадолжен знать и уметь применять каждый, чтобы быть здоровым и сильным.


Вирусная инфекция то, что пугает многих. Пугают в последнее время, скорее всего, результаты побочных эффектов неправильного лечения этой самой вирусной инфекции, а не сама инфекция.

Ну и в заключении, хотелось бы порекомендовать изучить и если заинтересует начать применять в своей практике предложения Кораллового Клуба, которые проверены временем и имеют большое количество положительных отзывов.

Строение и функции клетки.

Клетка — это единая живая система, состоящая из двух неразрывно связанных частей — цитоплазмы и ядра (цв. табл. XII).

Цитоплазма — это внутренняя полужидкая среда, в которой расположено ядро и все органоиды клетки. Она имеет мелкозернистую структуру, пронизанную многочисленными тонкими нитями. В ней содержатся вода, растворенные соли и органические вещества. Основная функция цитоплазмы — объединять в одно целое и обеспечивать взаимодействие ядра и всех органоидов клетки.

 

Наружная мембрана окружает клетку тонкой пленкой, состоящей из двух слоев белка, между которыми расположен жировой слой. Она пронизана многочисленными мелкими порами, через которые осуществляется обмен ионами и молекулами между клеткой и средой. Толщина мембраны 7,5—10 нм, диаметр пор 0,8—1 нм. У растений поверх нее образуется оболочка из клетчатки. Основные функции наружной мембраны — ограничивать внутреннюю среду клетки, защищать ее от повреждений, регулировать поступление ионов и молекул, выводить продукты обмена и синтезируемые вещества (секреты), соединять клетки и ткани (за счет выростов и складок). Наружная мембрана обеспечивает проникновение в клетку крупных частиц путем фагоцитоза (см. разделы в «Зоологии» — «Простейшие», в «Анатомии» — «Кровь»). Аналогичным образом происходит поглощение клеткой капель жидкости — пиноцитоз (от греч. «пино» — пью).

Эндоплазматическая сеть (ЭПС) — это состоящая из мембран сложная система каналов и полостей, пронизывающих всю цитоплазму. ЭПС бывает двух типов — гранулированная (шероховатая) и гладкая. На мембранах гранулированной сети располагается множество мельчайших телец — рибосом; в гладкой сети их нет. Основная функция ЭПС — участие в синтезе, накоплении и транспортировке основных органических веществ, вырабатываемых клеткой. Белок синтезируется в гранулированной, а углеводы и жиры — в гладкой ЭПС.

Рибосомы — мелкие тельца, диаметром 15—20 нм, состоящие из двух частиц. В каждой клетке их сотни тысяч. Большинство рибосом располагаются на мембранах гранулированной ЭПС, а часть — в цитоплазме. В их состав входят белки и р-РНК. Основная функция рибосом — синтез белка.

Митохондрии — это мелкие тельца, размером 0,2—0,7 мкм. Их количество в клетке достигает нескольких тысяч. Они часто меняют форму, размеры и местоположение в цитоплазме, перемещаясь в наиболее активную их часть. Внешний покров митохондрии состоит из двух трехслойных мембран. Наружная мембрана гладкая, внутренняя — образует многочисленные выросты, на которых располагаются дыхательные ферменты. Внутренняя полость митохондрий заполнена жидкостью, в которой размещаются рибосомы, ДНК и РНК. Новые митохондрии образуются при делении старых. Основная функция митохондрий — синтез АТФ. В них синтезируется небольшое количество белков, ДНК и РНК.

Пластиды свойственны только клеткам растений. Различают три вида пластид — хлоропласты, хромопласты и лейкопласты. Они способны к взаимному переходу друг в друга. Размножаются пластиды путем деления.

Хлоропласты (60) имеют зеленый цвет, овальную форму. Размер их 4—6 мкм. С поверхности каждый хлоропласт ограничен двумя трехслойными мембранами — наружной и внутренней. Внутри он заполнен жидкостью, в которой располагаются несколько десятков особых, связанных между собой цилиндрических структур — гран, а также рибосомы, ДНК и РНК. Каждая грана состоит из нескольких десятков наложенных друг на друга плоских мешочков из мембран. На поперечном разрезе она имеет округлую форму, диаметр ее 1 мкм. В гранах сосредоточен весь хлорофилл, в них происходит процесс фотосинтеза. Образующиеся при этом углеводы вначале скапливаются в хлоропласте, затем поступают в цитоплазму, а из нее — в другие части растения.

Хромопласты определяют красную, оранжевую и желтую окраску цветов, плодов и осенних листьев. Они имеют форму многогранных кристаллов, расположенных в цитоплазме клетки.

Лейкопласты бесцветны. Они содержатся в неокрашенных частях растений (стеблях, клубнях, корнях), имеют округлую или палочковидную форму (размером 5—6 мкм). В них откладываются запасные вещества.

Клеточный центр обнаружен в клетках животных и низших растений. Он состоит из двух маленьких цилиндров — центриолей (диаметром около 1 мкм), расположенных перпендикулярно друг другу. Стенки их состоят из коротких трубочек, полость заполнена полужидким веществом. Основная их роль — образование веретена деления и равномерное распределение хромосом по дочерним клеткам.

Комплекс Гольджи получил название по имени итальянского ученого, впервые открывшего его в нервных клетках. Он имеет разнообразную форму и состоит из ограниченных мембранами полостей, отходящих от них трубочек и расположенных на их концах пузырьков. Основная функция — накопление и выведение органических веществ, синтезируемых в эндоплазматической сети, образование лизосом.

Лизосомы — округлые тельца диаметром около 1 мкм. С поверхности лизосома ограничена трехслойной мембраной, внутри ее находится комплекс ферментов, способных расщеплять углеводы, жиры и белки. В клетке имеется несколько десятков лизосом. Новые лизосомы образуются в комплексе Гольджи. Их основная функция — переваривание пищи, попавшей в клетку путем фагоцитоза, и удаление отмерших органоидов.

Органоиды движения — жгутики и реснички — представляют собой выросты клетки и имеют однотипное строение у животных и растений (общность их происхождения). Движение многоклеточных животных обеспечивается сокращениями мышц. Основной структурной единицей мышечной клетки являются миофибриллы — тонкие нити длиной более 1 см, диаметром 1 мкм, расположенные пучками вдоль мышечного волокна.

Клеточные включения — углеводы, жиры и белки — относятся к непостоянным компонентам клетки. Они периодически синтезируются, накапливаются в цитоплазме в качестве запасных веществ и используются в процессе жизнедеятельности организма.

Углеводы концентрируются в зернах крахмала (у растений) и гликогена (у животных). Их много в клетках печени, клубнях картофеля и других органах. Жиры накапливаются в виде капель в семенах растений, подкожной клетчатке, соединительной ткани и т. д. Белки откладываются в виде зерен в яйцеклетках животных, семенах растений и других органах.

Ядро — один из важнейших органоидов клетки. От цитоплазмы его отделяет ядерная оболочка, состоящая из двух трехслойных мембран, между которыми располагается узкая полоска из полужидкого вещества. Через поры ядерной оболочки осуществляется обмен веществ между ядром и цитоплазмой. Полость ядра заполнена ядерным соком. В нем находятся ядрышко (одно или несколько), хромосомы, ДНК, РНК, белки и углеводы. Ядрышко — округлое тельце размером от 1 до 10 мкм и более; в нем синтезируется РНК. Хромосомы видны только в делящихся клетках. В интерфазном (неделящемся) ядре они присутствуют в виде тонких длинных нитей хроматина (соединения ДНК с белком). В них заключена наследственная информация. Число и форма хромосом у каждого вида животных и растений строго определенные. Соматические клетки, из которых состоят все органы и ткани, содержат диплоидный (двойной) набор хромосом (2 n); половые клетки (гаметы) — гаплоидный (одинарный) набор хромосом (n). Диплоидный набор хромосом в ядре соматической клетки создается из парных (одинаковых), гомологичных хромосом. Хромосомы разных пар (негомологичные) отличаются друг от друга по форме, месту расположения центромеры и вторичных перетяжек.

Прокариоты — это организмы с мелкими, примитивно устроенными клетками, без четко выраженного ядра. К ним относятся сине-зеленые водоросли, бактерии, фаги и вирусы. Вирусы представляют собой молекулы ДНК или РНК, покрытые белковой оболочкой. Они так малы, что их можно разглядеть только в электронный микроскоп. У них отсутствуют цитоплазма, митохондрии и рибосомы, поэтому они не способны синтезировать белок и энергию, необходимые для их жизнедеятельности. Попав в живую клетку и используя чужие органические вещества и энергию, они нормально развиваются.

Эукариоты — организмы с более крупными типичными клетками, содержащие все основные органоиды: ядро, эндоплазматическую сеть, митохондрии, рибосомы, комплекс Гольджи, лизосомы и другие. К эукариотам относятся все остальные растительные и животные организмы. Их клетки имеют сходный тип строения, что убедительно доказывает единство их происхождения.

Обмен веществ и превращение энергии в клетке.

Обмен веществ и энергии. Главным условием жизни любого организма является обмен веществ и энергии с окружающей средой. В каждой клетке непрерывно происходят сложнейшие процессы, которые направлены на поддержание и обеспечение нормальной жизнедеятельности самой клетки и организма в целом. Синтезируются сложные высокомолекулярные соединения: из аминокислот образуются белки, из простых Сахаров – полисахариды, из нуклеотидов – нуклеиновые кислоты. Клетки делятся и образуют новые органоиды, из клетки и в клетку активно транспортируются различные вещества. По нервным волокнам передаются электрические импульсы, сокращаются мышцы, поддерживается постоянная температура тела – на все это, а также на многие другие процессы, протекающие в организме, требуется энергия. Эта энергия образуется при расщеплении органических веществ. Совокупность реакций расщепления высокомолекулярных соединений, которые сопровождаются выделением и запасанием энергии, называют энергетическим обменом или диссимиляцией. В основном энергия запасается в виде универсального энергоемкого соединения – АТФ.

Аденозинтрифосфорная кислота (АТФ) – нуклеотид, состоящий из азотистого основания (аденина), сахара рибозы и трех остатков фосфорной кислоты (рис. 48). АТФ является главной энергетической молекулой клетки, своего рода аккумулятором энергии. Все процессы в живых организмах, требующие затрат энергии, сопровождаются превращением молекулы АТФ в АДФ (аденозиндифосфорную кислоту). При отщеплении остатка фосфорной кислоты высвобождается большое количество энергии – 40 кДж/моль. Таких высокоэнергетических (так называемых макроэргических) связей в молекуле АТФ две. Восстановление структуры АТФ из АДФ и фосфорной кислоты происходит в митохондриях и сопровождается поглощением энергии.

 

Запас органических веществ, которые организм расходует для получения энергии, должен постоянно пополняться или за счет пищи, как это происходит у животных, или путем синтеза из неорганических веществ (растения). Совокупность всех процессов биосинтеза, протекающих в живых организмах, называют пластическим обменом или ассимиляцией. Пластический обмен всегда сопровождается поглощением энергии. Основными процессами пластического обмена являются биосинтез белка (§ 2.10) и фотосинтез (§ 3.3).

Итак, в процессе энергетического обмена расщепляются органические соединения и запасается энергия, а во время пластического обмена расходуется энергия и синтезируются органические вещества. Реакции энергетического и пластического обмена находятся в неразрывной связи, образуя в совокупности единый процесс – обмен веществ и энергии, или метаболизм. Метаболизм непрерывно осуществляется во всех клетках, тканях и органах, поддерживая постоянство внутренней среды организма – гомеостаз.

Энергетический обмен. Большинству организмов на нашей планете для жизнедеятельности необходим кислород. Такие организмы называют аэробными. Энергетический обмен у аэробов происходит в три этапа: подготовительный, бескислородный и кислородный. При наличии кислорода органические вещества в процессе дыхания полностью окисляются до углекислого газа и воды, в результате чего запасается большое количество энергии.

Анаэробные организмы способны обходиться без кислорода. Для некоторых из них кислород вообще губителен, поэтому они живут там, где кислорода нет совсем, как, например, возбудитель столбняка. Другие, так называемые факультативные анаэробы, могут существовать как без кислорода, так и в его присутствии. Энергетический обмен у анаэробных организмов происходит в два этапа: подготовительный и бескислородный, поэтому органические вещества окисляются не полностью и энергии запасается гораздо меньше.

Рассмотрим более подробно три этапа энергетического обмена (рис. 49).

Подготовительный этап. Этот этап осуществляется в желудочно-кишечном тракте и в лизосомах клеток. Здесь высокомолекулярные соединения под действием пищеварительных ферментов распадаются до более простых, низкомолекулярных: белки – до аминокислот, полисахариды – до моносахаридов, жиры – до глицерина и жирных кислот. Энергия, которая выделяется при этих реакциях, не запасается, а рассеивается в виде тепла. Низкомолекулярные вещества, образующиеся на подготовительном этапе, могут использоваться организмом для синтеза своих собственных органических соединений, т. е. вступать в пластический обмен или расщепляться дальше с целью запасания энергии.

 

Бескислородный этап. Второй этап протекает в цитоплазме клеток, где происходит дальнейшее расщепление простых органических веществ. Аминокислоты, образованные на первом этапе, организм не использует на следующих этапах диссимиляции, потому что они необходимы ему в качестве материала для синтеза собственных белковых молекул. Поэтому для получения энергии очень редко расходуются белки, только в том случае, когда остальные резервы (углеводы и жиры) уже исчерпаны. Обычно самым доступным источником энергии в клетке является глюкоза.

Сложный многоступенчатый процесс бескислородного расщепления глюкозы на втором этапе энергетического обмена называют гликолизом (от греч. glycos – сладкий и lysis – расщепл



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-09-18 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: