Is there an End to the Computer Race?




Today the word «electronics» is in general usage. Millions of people have electron watches. There are a lot of various radio and TV sets, video cassette recorders and CD players in our houses: In factories and plants we are surrounded with electronically con­trolled machines and instruments, we are carried by airplanes, ships, trains and cars with built-in electronic devices, and satellites circle the globe. In other words, we are living in an electronic world. And the center of this world is a tiny silicon plate of a few square millimetres, an integrated circuit; or a chip, as it is more commonly known. The integrated circuit is undoubtedly one of the most sophisticated inventions of man, science and technology. It is in the heart of every electronic device and the more cassette re­corders, TV sets and computers we need, the more integrated cir­cuits are required. When we speak about a further development of computers we mean not only quantity, but also high technology and high speed. As the operation of an integrated circuit depends on microscopic "components", the purity of all materials and the cleanness at the plant they are produced at must be of the highest quality. A con­tinuous search is going on in laboratories throughout the world for more perfect, reliable and high speed electronic circuits. In the past it took scientists and researchers a whole lifetime to make a few thousand calculations, whereas for a modern computer this task is a matter of a few seconds. At present computers capable of performing billions of operations a second are required. Super­computers are different from ordinary computers. The ordinary computer does the computations operation by operation, while the supercomputer operates like a brain: all operations are being done simultaneously. In the next few years engineers will complete the work on com­puters of above 2 billion operations a second. It will take a few more years to produce a 10-billion operations computer. The fifth-generation computers performing 100 billion operations a second will become available,in the near future. Is there an end to this race? According to some researchers, we are close to what can be re­garded as a true physical limit. But other specialists think that pho­tons will make the operation a thousand times faster. This means that in the future it will be possible to expect the appearance of photon computers and that computations will be done by means of light. Light has several advantages over electronics: light beams are faster, travel in parallel lines and can pass through one another without interference. Already, the optical equivalent of a transis­tor has been produced, and intensive research on optical-electronic computers is being carried out in a number of countries around the world. In a few decades a new age of light may replace the still youthful electronic age. The race is going on.


6.Made in space
This label «Made in Space» for industrial materials will proba­bly surprise no one in the not so distant future. They may include superconductors, new kinds of alloys, substances with peculiar magnetic properties, supertransparent laser glass, polymers, plas­tics, and so on. Numerous experiments carried out at the Russian orbital space stations have paved the way to the development of methods and means of industrial production of new materials of better quality onboard a spacecraft. Experts estimate that within a few coming years industrial production of various materials will be started in space. Conditions on board a space vehicle orbiting Earth greatly dif­fer from those on its surface. However, all of these conditions can be simulated on Earth, except for one — prolonged weightless­ness. Weightlessness can be created on Earth, but only for a few seconds. A space flight is another matter: a satellite orbiting Earth is in a dynamic zero-gravity state, i.e., when gravity is cancelled out by inertia. What can weightlessness be used for? Many well-known pro­cesses go on differently due to the absence of weight. The Archime­des principle is no longer valid and, consequently, stable-state liquid mixtures can be obtained, the components of which would immediately separate on Earth because of different density. In case of melts of metals, glasses or semiconductors, they can be cooled down to the solidification point even in space and then brought back to Earth. Such materials will possess quite unusual qualities. In space there is no gravitational convection, i.e., movements of gases or liquids caused by difference of temperatures. It is well-known that various defects in semiconductors occur because of convection. Biochemists also have to deal with the worst aspects of convection, for example, in the production of superpure biologi­cally active substances. Convection makes it very difficult on Earth. Following the launch of the first orbital stations the specialists started experiments aimed at proving the advantages of the zero-gravity state for the production of certain materials. In this country all orbital stations from Salyut 5 onwards were used for that purpose, as well as rockets. Since 1976 over 600 technological experiments have been carried out on board manned and un­manned space vehicles. The experiments proved that many of the properties of the ma­terials obtained under the zero-gravity condition were much better than those produced on Earth. Besides, it has been established that it is necessary to develop a new science — physics of the weightless state — which forms the theoretical basis for space industry and space materials study. This science has basically been developed. The methods of mathematical modelling of the hydromechanical process under the zero-gravity condition have been created with the help of computers. Special space vehicles will also be needed for industrial produc­tion of new-generation materials. Research has shown that the ac­celeration rate on board these vehicles must be reduced to the minimum. It was found that space platforms in independent flight carrying the equipment were most suitable for producing materials. These vehicles will have to use their own propulsion systems to ap­proach their base orbital station after a certain period of time. The cosmonauts on board the station can replace the specimens. Many new and very interesting projects are planned for orbital stations. Here is one of them. Convection does not allow to grow large pro­tein crystals on Earth. But it is possible to grow such crystals under the zero-gravity condition and to study their structure. The data obtained during the experiments can be useful for the work of labo­ratories on Earth in using the methods of gene engineering. Thus, it may be possible to make new materials in space and also to obtain valuable scientific data for new highly efficient technologies on Earth. Preparatory work for industrial production in space at a larger scale is being carried out in Russia, the USA, Western Europe and Japan. It should be said that according to the estimates of Ameri­can experts production of materials in space is to bring 60 billion dollars in the future.
3. Электричество

Невозможно вообразить нашу цивилизацию без электричества: экономическое и социальное продвижение будет обращено в прошлое и наша ежедневная жизнь, полностью преобразуется. Электроэнергия стала универсальной. Тысячи явлений ­электричества, таких как освещение, электрохимия и электрометаллургия являются давнишними и неоспоримыми. С появлением электрического двигателя силовые кабели ­заменяли трансмиссионные валы, зубчатые колёса, ремни и блоки на 19-ом семинаре столетия. И своими силами целый диапазон различного времени и труда, экономящего время и труд, стал частью нашей каждодневных жизни. Другие устройства основаны на определенных свойствах электричества: электростатика в случае фотокопирования машины и электромагнетизма в случае радара и телевидения. Эти явления сделали электричество наиболее широко используемым. Первое индустриальное заявление было на серебряных семинарах в Париже. Генератор - новый компактный источник электричества - был также разработан там. Генератор заменял батареи и другие устройства, которые использовались прежде. Электрическое освещение вошло в широкое употребление в конце прошлого ­столетия с развитием электрической лампы Томасом Эдисоном. Тогда трансформатор был изобретен, первые электрические линии и ­сети были настроены, динамо и индукционные моторы были разработаны. С начала 20-ого столетия успешное развитие ­электричества началось всюду по индустриальному миру. Каждые десять лет потребление электричества удваивалось. Сегодня потребление электричества на душу населения в показатель развития государства и экономического благосостояния нации. ­Электричество заменило другие источники энергии, поскольку было понято, что это предлагает улучшенное обслуживание и уменьшенную стоимость. Одно из самых больших преимуществ электричества - то, что это чистота, легкость использования и производства без побочных продуктов. Электрические явления теперь покрывают все области человеческой деятельности от ­стиральных машин дома ­до последних лазерных устройств. Электричество - эффективный источник некоторых из новых технологических авансов, таких как лазер и электронные лучи. Электричество поистине предоставляет человечеству энергию будущего.




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: