Нейрофизиологические механизмы проведения боли.




РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫНАРОДОВ

МЕДИЦИНСКИЙ ФАКУЛЬТЕТ

Кафедра анестезиологии и реаниматологии

Зав. кафедрой профессор д.м.н. Бутров А. В.

 

 

 

РЕФЕРАТ.

Боль. Лечение боли.

Ковалёва М. О.

Группа МЛ-505

 

Москва 2011г.

Нейрофизиологические механизмы проведения боли.

Ведущая роль в формировании реакции организма на повреждение принадлежит нервной и эндокринной системам. При этом нейрофизиологические процессы в ЦНС развертываются в основном под влиянием потока ноцицептивных импульсов, берущих начало в соответствующих рецепторах поврежденных тканей. Но это нередко, особенно при тяжелой травме, не единственный источник импульсации, возбуждающей структуры ЦНС. Например, при сопутствующей травме кровопотере, гипоксемии, ацидозе возбуждающая импульсация исходит также от баро- и хеморецепторов. Раздражающее влияние на структуры мозга, контролирующие через афферентные пути системы жизнеобеспечения организма, часто усугубляются влиянием со стороны психической сферы. Имеет значение и прямое возбуждающее влияние на ЦНС некоторых биологически активных веществ, попадающих в кровоток из разрушенных тканей.

Рецепторы, воспринимающие повреждение тканей и формирующие афферентный поток импульсов, являются специфическими. Они получили название болевых. В современной литературе широко используется термин «ноцицептор» в качестве аналога «болевого рецептора», так как разные по своей модальности стимулы, способные вызвать боль, являются следствием повреждения тканей - ноцицепции. В настоящее время считается, что они представляют собой свободные нервные окончания немиелинизированных волокон и имеют множество концевых разветвлений с мелкими аксоплазматическими отростками, образующими плексиморфные сплетения в различных тканях и органах.

В зависимости от возбуждающих факторов выделяют две их разновидности: механорецепторы и хеморецепторы. Раздражение первых происходит в результате деформации структур клеток в поврежденных тканях. Вторые возбуждаются веществами, которые в физиологических условиях в тканях отсутствуют или содержатся в незначительных количествах.

Выделяют 3 типа таких веществ - тканевые, плазменные и выделяющиеся из нервных окончаний. Допускается, что одни субстанции, содержащиеся в основном в тканях, непосредственно активируют концевые разветвления немиелинизированных волокон и приводят к импульсной активности высокопороговых кожных, висцеральных и мышечных афферентов. Они вызывают ощущение боли у человека и псевдоаффективную ноцицептивную реакцию у животных при аппликации на ткани. Другие, сами не вызывающие боль, усиливают эффект ноцицептивного воздействия иной модальности. Cубстанция Р выделяется непосредственно из терминалей и взаимодействует с рецепторами, локализованными на их мембране. Деполяризуя ее, она вызывает генерацию импульсного ноцицептивного потока. Предполагается, что субстанция Р, содержащаяся в сенсорных нейронах спинномозговых ганглиев, действует и как синаптический передатчик в нейронах заднего рога спинного мозга.

В качестве химических агентов, активирующих свободные нервные окончания, рассматриваются, в том числе, и не идентифицированные до конца вещества или продукты разрушения тканей, образующиеся при сильных повреждающих воздействиях, при воспалении, при локальной гипоксии. Например, арахидоновая кислота в нормальных условиях эстерифицируется и входит в состав фосфолипидов клеточных мембран. После повреждения клетки под действием активированного фермента фосфолипазы А она высвобождается из клеточных мембран. Под действием фермента циклооксигеназы на арахидоновую кислоту образуются простагландины. Последние усиливают трансдукцию, сенсибилизируя ноцицепторы к влиянию других алгогенных соединений. Процесс перевозбуждения периферических рецепторов под воздействием алгогенов носит название первичной гипералгезии. Он имеет первостепенное значение в развитии боли вообще, а при воспалении в особенности.

Рассматриваемые виды ноцицептивных рецепторов распределены в тканях неравномерно. Механорецепторов больше в поверхностных слоях кожи, в фасциях, суставных сумках; хеморецепторы имеют более высокую концентрацию в глубоких слоях кожи, стенках сосудов, в висцеральных оболочках.

Процесс, при котором повреждающее воздействие трансформируется в виде электрической активности на окончаниях чувствительных нервов носит название трансдукции. Истинные механизмы этого процесса пока неясны. Предполагают, что трансформация разномодальных раздражителей в электрический импульс осуществляется независимыми механизмами.

Наряду с трансдукцией ноцицепцию составляют еще 3 физиологических процесса: трансмиссия, модуляция, перцепция.

Трансмиссия - проведение возникших импульсов по системе чувствительных нервов. Проводящие пути, ее обеспечивающие, сформированы из трех компонентов:

- первичного чувствительного афферентного нейрона, доходящего до спинного мозга,

- восходящего промежуточного нейрона, простирающегося от спинного мозга до стволовой части головного мозга и таламуса,

- таламокортикальных проекций.

Модуляция - это процесс, при котором ноцицептивная трансмиссия модифицируется под влиянием нейрональных воздействий.

Перцепция является финальным процессом, при котором трансдукция, трансмиссия и модуляция, взаимодействуя с индивидуальными физиологическими особенностями личности, создают конечное субъективное эмоциональное ощущение, воспринимаемое как боль.

От рецепторов возбуждение передается по нервным волокнам, которые являются аксонами нейронов межпозвонковых ганглиев. Структура и проводимость их неодинаковы. Применительно к импульсам, имеющим отношение к повреждению, выделяют волокна, обозначаемые латинскими буквами «А» и «С». Первые имеют хорошо выраженную миелиновую оболочку, связаны в основном с механорецепторами и обладают высокой скоростью проведения возбуждения. Среди них выделяют: а) A1 - толстые волокна, передающие импульсы с высокой скоростью и ответственные за низкопороговую механочувствительность, например при прикосновении; б) А-волокна - более тонкие, передающие импульсы со скоростью 3-30 м/с. Они отвечают за передачу быстрой острой боли и с ноцицепторов, и с терморецепторов. Волокна же «С» еще тоньше, имеют скудную миелиновую оболочку и низкую проводимость и связаны с тупой, длительной, истощающей болью, они особенно чувствительны к химическим воздействиям.

Основными проводниками кожной и висцеральной болевой чувствительности считают А- и С-волокна. Афферентные миелинизированные волокна большого диаметра не повышают свою активность в ответ на повреждающую стимуляцию и поэтому не могут участвовать в ноцицепции. При сопоставлении ощущения боли у человека со спектром вовлеченных в возбуждение афферентных волокон при раздражении кожных нервов было убедительно показано, что «первичная» боль связана с афферентной импульсацией в А-волокнах, а «вторичная» - с С-волокнами. Нарушение проведения возбуждения в миелиновых волокнах приводит к ослаблению «первичной» боли, но «вторичная» боль может даже усиливаться.

Афферентные волокна различного калибра по-разному распределяются уже в задних корешках перед их входом в спинной мозг - толстые миелинизированные проводники занимают их медиальную часть, а тонкие миелинизированные и С-волокна располагаются более латерально. Перерезка этих латеральных пучков сопровождается уменьшением боли.

Клетки чувствительных нейронов расположены в межпозвоночном ганглии. Их центральный отросток проникает в задний рог спинного мозга в составе заднего корешка, а передний отросток входит в состав спинномозгового нерва.

После входа в спинной мозг А1 и С - волокна в составе тракта Лиссауэра идут в каудальном и ростральном направлениях в пределах 1-2 сегментов и оканчиваются в дорсальной части заднего рога.

Нейрональная система заднего рога спинного мозга является первым центральным звеном, воспринимающим разномодальную афферентную информацию. Задние рога спинного мозга служат первой «релейной станцией» на пути импульсации к вышележащим отделам ЦНС. Именно здесь происходит взаимодействие между каналами болевой и неболевой чувствительности, на основании которого формируется поток восходящей испульсации нового качества и происходит переключение нервных волокон на нейроны второго порядка, а также на двигательные и симпатические нейроны с образованием сегментарной эфферентации к исполнительным структурам.

В настоящее время считают, что формирование восходящего ноцицептивного потока в спинном мозге происходит не только на основании взаимодействия разномодальных афферентных входов на релейных нейронах, но и в результате возбуждения «специфических болевых» нейронов, имеющих восходящие проекции. Предполагают, что активация этих нейронов происходит под воздействием различных биологически активных соединений, которые являются нейротрансмиттерами при передаче ноцицептивного импульса. Интересно, что они могут опосредовать повторную стимуляцию ноцицептивных нейронов и повышать их чувствительность к привходящим импульсам. Данный эффект называют вторичной гипералгезией.

К числу модуляторов сенситизации относят субстанцию Р, вазоинтестинальный пептид, холецистокинин, ангиотензин, аланин, возбуждающие аминокислоты L-глутамат и L-аспартат.

На мембране нейронов находятся рецепторы, связанные с L-белком. Нейромедиаторы взаимодействуют с этими рецепторами, изменяя возбудимость мембраны нейрона и вызывая выход ионов кальция из внутриклеточных депо. Активация NMDA - рецепторов увеличивает концентрацию внутриклеточного кальция в спинномозговых нейронах и активизирует фосфолипазу, что в конечном счете приводит к простагландиногенезу.

Наряду с этим ноцицептивные импульсы распространяются по восходящим путям спинного мозга. Различают две классические восходящие афферентные системы. Одна из них в пределах спинного мозга располагается в дорсальной и дорсолатеральной зоне белого вещества, другая - в его вентролатеральной части.

Лемнисковая система включает задние столбы спинного мозга, спиноцервикальный и неоспиноталамический тракты. Последний имеет прямое отношение к интеграции болевой перцепции и к проявлению первичной, т.е. хорошо локализованной боли.

Экстралемнисковые пути расположены в боковых столбах спинного мозга. В зависимости от места окончания восходящая антеролатеральная система разделяется на 3 основных тракта - спиноталамический, спиноретикулярный и спиномезенцефалический. Первый из них обозначается как неоспиноталамический, а два других объединяются в палеоспино-таламический тракт.

Спиноталамический тракт обеспечивает проведение болевых и температурных импульсов. В стволе головного мозга спиноталамический тракт располагается дорсолатеральнее пирамид и не прерываясь достигает вентральных постериолатеральных и частично интраламинарных ядер таламуса. Он состоит из быстропроводящих волокон, несет чувствительную распознающую информацию в зрительный бугор, в конкретные зоны сенсорной коры и реализует информацию о локализации, идентификации и интенсивности боли.

Спиноретикулярный тракт оканчивается в каудальной части ствола мозга. Он состоит из медленно проводящих волокон, отдает диффузные проекции в ретикулярную формацию ствола, околоводопроводное вещество, ядра шва, гипоталамус, лимбическую систему, лобные доли и таламус и играет главную роль в формировании аффективных, мотивационных и поведенческих реакций. Спиномезенцефалический тракт иногда рассматривается как компонент спиноретикулоталамической системы, поскольку он формируется аксонами нейронов тех же пластин, где локализованы спиноретикулярные клетки. Оканчивается спиномезенцефалический тракт в ретикулярной формации среднего мозга, в центральном сером веществе и в таламусе.

Лемнисковая и экстралемнисковая системы функционируют в тесном взаимодействии, и феномен боли обусловлен интегративным взаимовлиянием этих систем.

Одной из главных супрасегментарных зон восприятия афферентного притока и его переработки является ретикулярная формация среднего мозга. Она не только является важной релейной станцией передачи ноцицептивной информации, но и осуществляет ее анализ и интеграцию. Здесь оканчиваются пути и коллатерали восходящих систем и начинается диффузная проприоретикулярная система, а также восходящие проекции к вентробазальным и интраламинарным ядрам таламуса и далее - в соматосенсорную зону коры головного мозга. Через связи ретикулярной формации с гипоталамусом, базальными ядрами и лимбическим мозгом реализуются нейроэндокринные и эмоционально-аффективные компоненты боли, сопровождающие реакции защиты, бегства или нападения в ответ на повреждающие воздействия. Прямые и опосредованные многочисленные проекции ретикулярной формации в кору определяют ее участие в реакциях пробуждения, настораживания на повреждающие стимулы, в формировании ощущения боли и ее психофизиологической оценки.

Конечной собирательной станцией ноцицептивной импульсации является таламус. Из его структур участие в ноцицепции принимают вентробазальный комплекс, задняя группа ядер, медиальные и интраламинарные ядра.

Вентробазальный комплекс состоит из двух ядер: вентрального заднебокового и вентрального заднемедиального. Два последних ядра наиболее тесно связаны с передачей боли и с нейроэндокринными реакциями на хирургический стресс.

Сигналы, поступающие в вентробазальный комплекс, подвергаются обработке и уже в организованном виде проецируются в соматосенсорную зону коры. Мультисенсорная конвергенция на нейронах вентробазального комплекса обеспечивает точную соматотопическую информацию о локализации боли, ее пространственную соотнесенность и сенсорно-дискриминантный анализ.

Задняя группа ядер. Ноцицептивные сигналы для этой системы ядер поступают по спиноталамическому пути и по задним столбам, передаваясь затем без соматотопической организации в ретроинсулярную зону коры и в дополнительную соматосенсорную область. Считается, что эти таламические ядра, наряду с вентробазальным комплексом, участвуют в передаче и оценке информации о локализации болевого воздействия и частично - в формировании мотивационно-аффективных компонентов боли.

Медиальные и интраламинарные ядра. К ним относятся ассоциативное медиодорсальное ядро и неспецифические интраламинарные ядра - центральное медиальное, центральное латеральное, парацентральное, парафасцикулярное и срединный центр. В них оканчиваются волокна спино-таламического тракта, а также обширные проекции из всех восходящих трактов, связанных с ноцицепцией. Клетки этих ядер отвечают на соматические, висцеральные, слуховые, зрительные и болевые стимулы.

Деструкция интраламинарных и медиальных ядер у людей сопровождается аналгезией, особенно отчетливо выраженной, когда боль обусловлена преимущественной активацией высокопороговых висцеральных афферентов. Разрушение медиодорсального ядра снижает ответные реакции на боль, создает эмоциональную индифферентность к боли.

Медиальные и интраламинарные ядра таламуса играют основополагающую роль в интеграции «вторичной», протопатической, плохо локализованной боли. Эти ядра формируют также сложные вегетомоторные высокоинтегрированные защитные реакции на ноцицепцию, а также мотивационно-поведенческие проявления боли и ее аффективное, дискомфортное восприятие.

Большое значение в формировании ноцицепции имеет и гипоталамус, как эмоциогенный и высший вегетативный центр. Особенно важно его паравентрикулярное ядро, являющееся главным интегрирующим центром гуморальных и автономных реакций. Именно в этом ядре локализуются нейроны, содержащие вазопрессин и кортикотропин-рилизинг-гормон. Нейроны этого ядра синтезируют КРГ и выделяют его в область средней возвышенности стебля гипофиза, откуда он секретируется непосредственно в кровь. Проходя по системе кровеносных сосудов к передней доле гипофиза, КРГ стимулирует высвобождение адренокортикотропного гормона,?-эндорфина и их поступление в общую гемоциркуляцию. Вазопрессин транспортируется из паравентрикулярного ядра и накапливается в задней доле гипофиза, откуда он секретируется в кровь.

Таламус имеет двустороннюю связь с лимбической системой, полосатым телом и сенсомоторной зоной коры больших полушарий. Именно с этой зоной связывают факт осознания человеком болевого ощущения, формирования перцептуального компонента боли. Вторая сенсомоторная зона играет ведущую роль в механизмах формирования адекватных защитных реакций организма в ответ на болевое раздражение.

В формировании системной болевой реакции организма участвует не только сенсомоторные зоны коры. Происходит генерализованное возбуждение всех областей коры больших полушарий вследствие восходящих активирующих влияний ретикулярной формации. В частности, очень важное значение имеет возбуждение лобных отделов коры через связи с таламусом, гипоталамусом, лимбическими структурами, сенсомоторной зоной. Активацию данной области связывают с формированием мотивации избавления от болевых ощущений.

В реализации нейроэндокринных реакций на ноцицептивные раздражители выделяют ось гипоталамус-гипофиз-надпочечники и симпато-адреналовую систему. Последняя накапливает и высвобождает катехоламины. Система ГГН вносит свой вклад продукцией трофических гормонов гипоталамусом и стимуляцией гипофиза, выделяющего АКТГ,?-эндорфин, гормон роста и пролактин. Циркулирующий в крови АКТГ стимулирует надпочечники, которые в свою очередь усиливают секрецию кортизола и альдостерона.

Нейрофизиологическим субстратом сегментарных гемодинамических реакций являются преганглионарные симпатические нейроны, локализованные в боковом роге спинного мозга. Аксоны этих нейронов не только выходят через передние корешки и достигают ганглиев, но и распространяются внутри спинного мозга, образуя проприоспинальный симпатический тракт. Посредством проприоспинальной системы преганглионарные нейроны активируются и участвуют в генерализации симпатических рефлексов. Именно вовлечение через систему проприоспинальных связей преганглионарных нейронов различных сегментов определяет сдвиги системной гемодинамики, сопряженные с изменениями регионарного кровообращения. Структура гемодинамической реакции при этом направлена на реализацию поведенческих реакций избегания или устранения вредоносного стимула и включает повышение артериального давления, увеличение сердечного выброса, сужение сосудов почек и желудочно-кишечного тракта с одновременным расширением сосудов скелетных мышц и т.д.

Таким образом, болевая реакция есть интегративная реакция практически всех структур головного мозга и многих функциональных процессов, происходящих в организме и обеспечивающих активацию его защитно-приспособительных механизмов. В отличие от ноцицепции, боль - это не только сенсорная модальность, но и ощущение, эмоция и своеобразное психическое состояние. Как психофизиологический феномен она формируется на основе интеграции ноцицептивных и антиноцицептивных систем и механизмов головного мозга.

Сильное ноцицептивное воздействие на организм, а также другая связанная с травмой информация неизбежно приводят к развитию выраженной стресс-реакции, проявляющейся функциональным напряжением всех систем жизнеобеспечения, повышением энергетических запросов и изменением трофики тканей. На фоне резко выраженного и длительного возбуждения ноцицептивной системы создается потенциальная опасность их перенапряжения и истощения, что может приводить к тяжелым последствиям. В процессе эволюции организм сумел выработать способность в определенной степени противодействовать этой опасности посредством своеобразных механизмов контроля вызываемой повреждением афферентной импульсации. Совокупность открытых к настоящему времени механизмов такого рода получила название антиноцицептивной системы.

Первые сообщения о способности организма модулировать афферентную импульсацию были сделаны Мельзаком и Воллом в 1965 г. Эти ученые, основываясь на экспериментальных данных, разработали концепцию, получившую в последующем название «теории входа». Согласно ей в задних рогах спинного мозга, где на афферентном пути находится первая зона переключения импульсов с одних нейронов на другие, есть механизм, способный изменять синаптическую передачу. Функционирование его основано на динамике баланса активности первичных афферентов, проводящих импульсы по миелиновым и безмиелиновым волокнам, которые имеют различную скорость распространения возбуждения. Основная роль в контроле афферентного потока импульсов на уровне передачи их на нейроны второго порядка, согласно этой концепции, принадлежит желатинозной субстанции задних рогов спинного мозга.

В современных ее модификациях, в том числе и самих авторов, бoльший акцент сделан на роли постсинаптических и нейрохимических процессов в регуляции передачи разномодальных импульсов на релейные нейроны спинного мозга. При возбуждении клеток студенистого вещества, возникающем благодаря импульсации, идущей по толстым сенсорным волокнам через эти аксо-аксональные синапсы, происходит деполяризация ноцицептивных терминалей с угнетением выделения трансмиттера в синаптическую щель, что и определяет механизм пресинаптического торможения. При активации же тонких ноцицептивных волокон возникает торможение нейронов студенистого вещества, в связи с чем имеет место пресинаптическое облегчение: увеличение выделения трансмиттера и улучшение транссинаптической передачи. Кроме данного механизма контроля на уровне входа в спинной мозг, «теория ворот» постулировала наличие центрального контроля входа, осуществляемого супраспинальными структурами.

Несмотря на то, что некоторые положения «теории входа» в настоящее время устарели, она имела большое значение, поскольку явилась первым шагом на пути научных изысканий в рассматриваемой области. Дальнейшие исследования в этом направлении позволили открыть и другие механизмы антиноцицептивной защиты. В частности, в 1973 г. в эксперименте было установлено, что в нервной системе есть «места узнавания» морфина, т.е. специфические опиатные рецепторы. Вскоре были обнаружены и эндогенные морфиноподобные вещества. К настоящему времени открыто более 30 эндогенных олигопептидов, в той или иной степени обладающих фармакологическими свойствами морфина. Выделены три основные группы эндогенных опиатов, отличающихся между собой по химическому строению, распределению в организме и действию; установлены зоны в центральной нервной системе, ответственные за антиноцицептивный контроль. Накопились данные, свидетельствующие о том, что опиатный антиноцицептивный механизм в организме не единственный.

Ключевое место среди аналгетических зон головного мозга занимает центральное серое вещество среднего мозга. Оно находится в непосредственной близости со структурами, в которые направляются афферентные волокна восходящих ноцицептивных систем, и получает проекции от спинальных сенсорных путей, от нейронов спинального тригеминального ядра, от восходящих проекций ретикулярной формации.

Другой важной областью в эндогенной болеутоляющей сиcтеме являются ядра шва ствола и среднего мозга. Нейроны ядер шва получают прямые волокна из ЦСВ, а аксоны их клеток проецируются как в восходящем, так и в нисходящем направлениях. Нисходящие волокна из этих ядер, особенно из большого ядра шва, проходят в дорсолатеральном канатике и прослеживаются в заднем роге спинного мозга. Выявлены сложные реципроктные отношения между клетками ядер шва и ЦСВ, а также установлено наличие прямых проекций из ЦСВ в спинной мозг. Эти ядра традиционно рассматриваются как основное, конечное звено эндогенной болеутоляющей системы ЦСВ. В результате их возбуждения угнетается восходящий ноцицептивный поток, формируемый на сегментарном уровне.

Наряду с нисходящей системой ядер шва, существует еще одна система, участвующая в контроле за активностью сегментарных механизмов афферентного входа, а именно - система нисходящих связей ядер ретикулярной формации ствола головного мозга. Эти ядра, объединяемые термином «ростровентральный ствол», играют существенную роль в модуляции боли. Раздражение этой области вызывает отчетливое обезболивание и угнетает ответы нейронов заднего рога спинного мозга на ноцицептивные стимулы.

На сегментарном уровне модуляцию активности релейных нейронов, связанных с ноцицептивной афферентацией, осуществляют нейроны желатинозной субстанции. Взаимодействуя с нейронами 1 и 2 типа, они образуют систему афферентного входа в спинной мозг и контролируют формирование восходящего ноцицептивного потока.

Нейроны желатинозной субстанции активизируются нисходящими влияниями от таламуса либо неноцицептивными воздействиями с афферентных волокон. В итоге это ведет к затруднению проведения ноцицептивной импульсации через желатинозную субстанцию и уменьшению мощности того потока импульсов, который впоследствии, пройдя через таламус и достигнув коры, формирует ощущение боли. Если повышается активность С-волокон, то проведение возбуждения через желатинозную субстанцию облегчается. Нисходящий контроль осуществляется разными механизмами. Возникающие при этом рефлексы реализуются через такие медиаторы, как 5-гидрокситриптамин, норадреналин и эндогенные опиаты.

Антиноцицептивные влияния модулируют в первую очередь наиболее лабильные компоненты болевой реакции - эмоционально-поведенческое реагирование и интервал переносимости боли. Эта модуляция может осуществляться за счет нарушения механизмов, формирующих признаки генерализованной реакции на боль, в частности, на уровне лимбической системы и гипоталамуса, с которыми центральное серое вещество имеет многочисленные морфологически идентифицированные связи.

В настоящее время регуляцию болевой чувствительности предлагается рассматривать с позиции системы диффузного ноцицептивного тормозного контроля. Суть ее состоит в том, что само ноцицептивное воздействие может модулировать афферентный вход на сегментарном уровне. В реализации этого эффекта существенное значение имеют нисходящие тормозные влияния из супрасегментарных структур. Весьма упрощенно можно полагать, что высокопороговая импульсация, возникающая в результате нарушения исходного взаимодействия на сегментарном уровне, поэтапно достигая различные отделы мозга, в том числе коры, формирует перцепцию боли и вызывает разнообразные сдвиги, сопровождающие это ощущение. Одновременно на каждом уровне ЦНС высокопороговый афферентный поток «запускает» системы, влияние с которых ориентировано на иерархически ниже расположенные структуры. Каждое вышерасположенное антиноцицептивное звено включается в том случае, когда исчерпана адаптационная возможность гомеостатических механизмов предшествующих уровней.

Различают 4 антиноцицептивные системы: нейронную опиатную, гормональную опиатную, нейронную неопиатную, гормональную неопиатную. Однако такое деление весьма условно, так как все они весьма тесно взаимосвязаны между собой как функционально, так и морфологически.

Наиболее изучены на сегодняшний день опиоидэргические механизмы регуляции боли. Опиатные рецепторы имеются на всех уровнях антиноцицептивной системы, но наибольшие их скопления обнаруживаются в релейных станциях переключения ноцицептивной импульсации и особенно в заднем роге спинного мозга, в нисходящих ингибирующих путях от головного к спинному мозгу, гигантоклеточном ядре и таламусе. Наибольшее практическое значение имеют три основных типа опиатных рецепторов: -, - и - рецепторы. Плотность их распределения в разных отделах мозга неодинаковая. В коре головного мозга преобладают -рецепторы, а «-» больше, чем «-». В стволе же мозга и спинном мозге содержание «-» и «-» примерно одинаковое и больше, чем «-».

Активация рецепторов приводит к спинальной и супраспинальной аналгезии, причем подавляются все ноцицептивные реакции, вызываемые термическим, механическим, электрическим или химическим болевым раздражением. Воздействующие на них препараты кроме аналгезии вызывают эйфорию, седативный эффект, гипотермию, психическую и физическую лекарственную зависимость, угнетение дыхательного центра и желудочно-кишечного тракта.

-рецепторы обеспечивают аналгезию, в том числе и спинальную, что объясняется высокой плотностью этих рецепторов во внешних слоях задних рогов спинного мозга, угнетение дыхания. Их активация вызывает изменение поведенческих реакций.

- рецепторы в эксперименте наиболее эффективны на моделях так называемой висцеральной боли. Однако по клинической эффективности их агонисты уступают агонистам -рецепторов. Обеспечивают седативный, психомиметический, а также симпатоактивирующий эффект, учащение дыхания, манию, миоз.

На современном этапе доказано существование не только отдельных типов рецепторов, но и их подтипов, аналогично тому, как подразделяются рецепторы классических нейромедиаторных систем.

В зависимости от характера взаимодействия с опиатными рецепторами опиаты и опиоиды могут быть агонистами, частичными агонистами, антагонистами и агонистами-антагонистами.

Препараты, которые при воздействии на рецепторы вызывают развитие максимально полного эффекта, называют агонистами. Частичные агонисты слабее активируют рецепторы и вызывают реакцию, не достигающую максимальной, поэтому они слабее полных агонистов. Антагонисты связываются с рецепторами, но не активируют их. Одни и те же препараты могут возбуждать одни рецепторы и блокировать другие.

Используемые в анестезиологии опиаты и опиоиды обладают различным сродством к опиатным рецепторам, что необходимо учитывать в практической деятельности. Например, одновременное применение агонистов с агонистами-антагонистами может привести к ослаблению аналгетического эффекта.

Эндогенные опиоидные вещества, обусловливающие активацию этих рецепторов, называются лигандами. Наибольшее значение из них имеют два типа: эндорфины и энкефалины. Они являются пептидами и в организме подвергаются действию пептидаз. Энкефалины обладают высоким сродством к -рецепторам и сравнительно небольшим - к -рецепторам. Для эндорфинов характерен равный аффинитет к - и -рецепторам, но они слабо взаимодействуют с -рецепторами.

Энкефалины присутствуют в органах желудочно-кишечного тракта, в симпатической нервной системе и в надпочечниках. Заметное их количество находят в зонах ЦНС, участвующих в антиноцицепции: в периакведуктальном сером веществе, в ростровентрикулярной части продолговатого мозга, в пластинах Рекседа I, II, V и Х. Они образуются в гипофизе и гипоталамусе и оттуда поступают в нейрогипофиз. Предполагается, что они выполняют функцию нейротрансмиттеров и нейромодуляторов, контролируя высвобождение различных нейромедиаторов.

Эндорфины локализуются в секреторных гранулах гипофиза и высвобождаются вместе с АКТГ. Они представлены?-эндорфином, который образуется в результате гидролиза?-липотропина, не обладающего опиатоподобной активностью.?-эндорфин обнаруживается в гипоталамусе, периакведуктальном сером веществе и в области голубоватого места, где ему отводится роль нейромедиатора и нейромодулятора. Он выделяется и в кровь, а также в спинномозговую жидкость, что позволяет ему контактировать с опиатными рецепторами, расположенными на всех уровнях ноцицептивной системы, включая периферические рецепторы.

Эндогенная опиоидная система, через которую реализуется действие опиоидных аналгетиков, не имеет непосредственного отношения к регуляции реакций организма на боль. Эта регуляция происходит посредством других центральных, но неопиатных механизмов. Среди них важнейшее место принадлежит адренергическим структурам, осуществляющим регуляцию гемодинамических сдвигов при боли, не поддающихся коррекции опиатами. Значительная часть адренергических структур сосредоточена в латеральном отделе ствола и промежуточном мозге, особенно ими богата ретикулярная формация. Часть их аксонов идет к коре, другая - к нижележащим образованиям мозга. Если активировать центральные адренергические структуры, то формируется аналгезия с подавлением эмоционально-поведенческих и гемодинамических проявлений боли. Причем адренергические механизмы супрасегментарного уровня регулируют гемодинамические реакции с участием?2-рецепторов, а сегментарно-поведенческие проявления реализуются через?1-адренорецепторы. В настоящее время имеются веские доказательства сопряженного участия опиоидергических и адренергических механизмов в регуляции болевой чувствительности. Угнетение ноцицептивных реакций под влиянием опиатов и опиоидов обусловлено усилением процессов нисходящего торможения структур спинного мозга, которое реализуется через норадренергические системы. Установлено совместное распределение на всем протяжении спинного мозга симпатических преганглионарных нейронов и энкефалинергических волокон и обнаружено, что?-адренорецепторы и опиатные рецепторы локализуются в одних и тех же поверхностных слоях задних рогов спинного мозга. Адрено- и опиатные рецепторы могут взаимодействовать и модулировать ноцицептивную передачу в спинном мозге. Взаимодействие адренергических и опиоидергических механизмов может осуществляться через разные рецепторы, но с последующим запуском общего аналгетического механизма на уровне головного и спинного мозга. Фармакологическое воздействие на?2-адренорецеторы их агонистами в значительной степени устраняет прессорные реакции кровообращения при боли, вызывает гипоалгезию и значительно повышает аналгетическое действие наркотических анальгетиков, что находит применение в клинической практике.

Болеутоляющее действие адренопозитивных средств не изменяется в условиях блокады опиатных рецепторов, но снижается при использовании антагонистов?-адренорецепторов. Эти данные свидетельствуют о том, что адренергические механизмы не просто корректируют гемодинамический ответ на боль, но и обладают самостоятельным болеутоляющим действием. Полагают, что эффект их обусловлен угнетением нейронов спинного мозга и тех структур головного мозга, которые специфичны для формирования нейрофизиологических ответов при ноцицептивных воздействиях.

Дофаминовая система также принимает участие в регуляции боли. Уменьшение аналгезии при стрессе дает блокада дофаминовых рецепторов галоперидолом, а активация дофаминергической системы усиливает анестезию морфином. Известно несколько дофаминергических пучков, берущих начало в различных отделах головного мозга. Первый - мезостриальный - начинается в клетках компактной зоны и латеральной части черного ядра и проецируется в вентральную часть центрального серого вещества, хвостатого ядра, переднюю цингулярную, прифронтовую кору. Аксоны мезолимбического пути берут начало в нейронах интерпедикулярных ядер, и их терминали оканчиваются в обонятельных бугорках, ложе ядер терминальных полосок и перегородке.

Центральные механизмы опиатной аналгезии связаны и с другими неопиатными системами ЦНС: серотонинергической и ГАМК-ергической. Установлено, что при стимуляции ядер шва ствола и среднего мозга имеет место выделение серотонина в терминалях волокон нисходящего пути, идущего через дорсолатеральный канатик к нейронам заднего рога спинного мозга. Участие серотонинергической нейромедиаторной системы в регуляции болевой чувствительности является специ



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: