Разработка структурной схемы установки для светогидравлической промывки.




Анализ схем возможных вариантов светогидравлической обработки позволил разработать общую структуру технологических установок, использующих этот принцип (рис. 2.1).

Источником энергии в установке является лазер [2], излучение которого через оптическую систему направляется в камеру светогидравлического устройства. Взаимодействие всех элементов, образующих схему установки, регулирует блок управления (Б.У.) [3].

 
 

 


Рис 2.1. Общая структурная схема установок для светогидравлической промывки.

1 – рабочая камера;

2 – лазер с оптической системой;

3 – блок управления (Б.У.);

4 – блок герметизации рабочей камеры;

5 – блок вакуумирования рабочей камеры;

6 – блок регистрации уровня жидкости в рабочей камере;

7 – блок подачи жидкой среды в рабочую камеру;

8 – блок слива отработанной жидкой среды;

9 блок тарированной подачи капель промывочной жидкости в рабочую камеру;

10 – блок измерения спектрографических характеристик промывочной жидкости.

11 – датчик устройства встроенного контроля качества выполнения операции.

Герметизация камеры осуществляется за счет механизма прижима [4], в котором одновременно предусмотрен датчик для измерения силы прижима. По достижении заданного значения усилия прижима подается сигнал на Б.У., который отключает механизм 4 и подает сигнал на включение блока 5, представляющего собой устройство вакуумирования рабочей камеры.

Величина достаточного вакуума регистрируется и по достижении заданного его значения подается сигнал на Б.У. об отключении блока 5 и последующих блоков.

В подготовленную таким образом камеру подается жидкая рабочая среда за счет устройства 7, часть жидкости при этом перетекает в специальную емкость водного затвора, в которой уровень ее регистрируется блоком, который после достижения заданного уровня подает на Б.У. сигнал о прекращении подачи жидкой среды и включении в работу блока 9.

В жидкую рабочую среду вводятся капли за счет блока тарированной подачи 9 и одновременно ведется измерение его количества. По достижении заданного параметра на Б.У. подается сигнал, прекращающий подачу капель. Одновременно с введением капель Б.У. подает команду на зарядку блока конденсаторов лазера 2.

Блок управления подает команду на включение в работу лазера. За счет светогидравлического эффекта в камере создается облако капель промывочной жидкости, характеристики которых регистрируются блоком 10.

Качество выполнения операции может регистрироваться с помощью датчиков встроенного контроля (блок 11), которые подаются блоком 10.

Качество выполнения операции может регистрироваться с помощью датчиков встроенного контроля (блок 11), которые подают сигналы на Б.У. В случае невыполнения заданных требований Б.У. выдает команду на повторение операции, а при достижении требуемого качества – на блок 8, который сливает обработанную жидкую среду и катализатор, и приводит все элементы установки в исходное состояние.

Выбор конкретной конструкции и параметров всех перечисленных элементов установки зависят, как уже указывалось, от вида решаемой технологической задачи.


Рис.2.2. Алгоритм работы лабораторного образца установки для светогидравлической

промывки.

 

 

 

 


Лист 01.


 

 

 
 

 


Лист 02.


 

 

 


Лист 03.

       
   
 
 
 
 
 
 
 
 


Лист 04.

 

Рис.2.2. Алгоритм работы лабораторного образца установки для светогидравлической промывки.

Рис. 2.3. зависимость диаметра монодисперсных парожидкостных микропузырей очищающей жидкости от мощности светового потока лазера.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: