Диффузионная модель процесса ВГ.




Для рассмотрения кинетики образования рав­новесного распределения примеси вокруг преци­питата запишем. уравнение диффузии в виде

 

- где j вектор плотности потока частиц определяется выражением

 

После подстановки и перехода к сферическим координатам уравнение (9) принимает вид:

 

Уравнение (6) совместно с (3) и с соответст­вующими начальными и граничными условиями описывает эволюцию поля концентраций примес­ных комплексов С(r), а при t®¥ — равновес­ное состояние. В случае ограниченного числа частиц граничными условиями являются: на внешней поверхности j=0, на внутренней границе раздела Si—Si02, j= VsC, где Vs— коэффициент поверхностного массопереноса границы раздела кремний—окисел. Переходя в уравнении (6) к безразмерным переменным:

получим:

(7)

Результаты численного решения уравне­ния (7) показали, что при больших временах равновесное распределение является предельным для кинетических распределений. Для количест­венного представления эффективности процесса ВГ на рис. 3 представлена величина h-доля при­меси, геттерированной на преципитате, как функ­ция безразмерного времени. Кривые 1 и 2 описы­вают эффективность процесса ВГ соответствен­но с учетом и без учета упругого взаимодейст­вия. Параметр g соответствует здесь относитель­ному линейному несоответствию включения и полости в матрице, в которую он вставлен, равно­му 0,005, что типично для кислородного преципи­тата в кремнии, выращенном по методу Чохральского. Из рисунка видно, что дополнительный вклад геттерирования, вследствие упругого взаи­модействия сопоставим с величиной геттерирова­ния в отсутствие упругого взаимодействия. При этом процесс ВГ при упругом взаимодействии протекает быстрее.

 

Рис. 3. Доля геттерированных примесных атомов как функция времени в процентах к их полному числу при начальной кон­центрации (Со=10^-8): 1 - с учетом взаимодей­ствия примесный комплекс-геттер.

2 - без учета взаи­модействия

 

Развитая модель формирования атмосфер и геттерирования примесных атомов дипольного типа вблизи сферического преципитата показы­вает, что в условиях формирования комплексов примесный атом — точечный дефект кислород­ные преципитаты могут служить центрами кон­денсации примесных атомов. Если на поверхности преципитата происходит распад комплекса, при котором на ней осаждается атом примеси, то для поддержания равновесного значения концентра­ции потребуется диффузионно-дрейфовый под­вод новых комплексов. Таким образом, в усло­виях- образования подвижных комплексов при­месный атом—точечный дефект вдали от преци­питата и их распада вблизи его развитая модель дает объяснение механизма геттерирования, ко­торый не имеет ограничения по пересыщению и служит «дрейфовым насосом», обеспечиваю­щим уменьшение концентрации примеси в объеме кристалла.

Анализ результатов расчетов позволяет вы­делить следующие моменты, определяющие свой­ства процессов ВГ.

n эффективность геттерирования является функцией температуры, причем существует оп­тимальная температура для максимальной эф­фективности этого механизма геттерирования;

n геттер (преципитат SiO2) действует не только как сток для примесей, но и как источник междоузлий Si, которые активируют процесс ВГ;

n собственные междоузлия кремния, инжек­тируемые растущим преципитатом в объем кри­сталла, взаимодействуют с геттерируемыми ато­мами, и напряжения влияют на увеличение дрейфового потока.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: