Эволюция биосферного круговорота кислорода




Откуда же на нашей планете взялись столь большие запасы молекулярного кислорода, что даже современный уровень антропогенного воздействия на атмосферу не способен заметно их понизить? Более 4 млрд. лет назад, когда на Земле зародилась жизнь, атмосфера состояла из углекислого газа, азота, аммиака, водорода, метана и паров воды, но свободный кислород в ней отсутствовал (Одум, 1989, Воронов и др., 2002). Из-за отсутствия кислорода не существовало и озонового слоя, экранирующего ультрафиолетовое излучение Солнца, которое свободно достигало поверхности суши и океана. Поэтому жизнь могла развиваться только под защитой слоя воды. Древнейшая жизнь существовала, по-видимому, в виде анаэробных прокариотических организмов, получающих энергию и пищу от органических веществ абиогенного происхождения, образовавшегося еще раньше. Постепенно запасы органических веществ, образовавшихся в добиологический период существования Земли, были исчерпаны, и перед живыми организмами встала проблема по поиску альтернативного (по отношению к органическим веществам абиогенного происхождения) источника энергии. Таким источником стал солнечный свет, за счет энергии которого живые организмы стали осуществлять реакцию фотосинтеза. Первыми фотосинтетическими организмами могли быть анаэробные бактерии, подобные современным пурпурным или зеленым серобактериям (Заварзин, 1984).Следы анаэробного фотосинтеза в виде сульфатных минералов прослеживаются в отложениях возраста 3.5-4 млрд. лет. Однако этот тип фотосинтеза не приводит к образованию свободного молекулярного кислорода.

Оксигенный (то есть кислородопродуцирующий) фотосинтез появился около 2.7 млрд. лет назад (Башкин, 2002). Первоначально он осуществлялся прокариотическими организмами, близкими к современным цианобактериям. Именно аэробный фотосинтез положил начало наиболее масштабным биогеохимическим преобразованиям, приведшим к формированию окислительной атмосферы Земли. В атмосфере свободный кислород появился существенно позже, поскольку он в течение нескольких сотен миллионов лет расходовался на окисление различных восстановленных веществ, в первую очередь растворенных в морской воде ионов железа с выпадением в осадок окиси железа. Около 2 млрд. лет назад, когда была окислена вся масса недоокисленных соединений, начался процесс быстрого роста массы атмосферного кислорода. Стали развиваться формы аэробных организмов, использующих кислород для окисления органических веществ и тем самым получения энергии для существования. Аэробное окисление по сравнению с анаэробным брожением является более выгодным энергетическим процессом. Увеличение энергетических возможностей живых организмов создало основу для интенсификации метаболизма и усложнения их структуры. В результате 1.4 млрд. лет назад началось бурное развитие эукариотических организмов, а примерно 1.3 млрд. лет назад появились многоклеточные растения и животные (Воронов и др., 2002).

Количество свободного кислорода в атмосфере планеты между тем продолжало все увеличиваться. Под действием коротковолнового излучения молекулярный кислород (O2) превращается в озон (O3). Спектр поглощения озона приходится на ультрафиолетовый диапазон, в результате озоновый слой атмосферы (или, как его часто называют, озоновый экран) является барьером для ультрафиолетового излучения Солнца. Озон образовывался даже при минимальных концентрациях кислорода в атмосферном воздухе, но достаточную эффективность защиты от ультрафиолета озоновый экран приобрел при содержании кислорода, составлявшем 10% от современного уровня (точка Веркнера-Маршалла). Жизнь получила возможность выйти на сушу, которую и реализовала около 500 млн. лет назад (Воронов и др., 2002).

Процесс возрастания массы кислорода массы кислорода не был непрерывным (рис. 5). За последние 500 млн. лет общая тенденция к росту массы свободного кислорода маскировалась значительными колебаниями (Будыко и др., 1985). Эти колебания определялись соотношением продуктивности фотосинтеза и процессов разложения запасов органического вещества. Так, распространение влажного теплого климата на основной части поверхности суши в карбоновом периоде (270-330 млн. лет назад) привело, с одной стороны, к увеличению продуктивности фотосинтеза, с другой, к возрастанию массы захороненного органического вещества (поскольку в переувлажненных почвах процессы разложения лимитируются недостатком кислорода). В результате имел рост массы кислорода. Резкое понижение массы свободного кислорода в поздней перми-триасе (180-250 млн. лет назад) было связано с аридизацией суши, что снизило первичную продукцию и улучшило условия для разложения биомассы и органических веществ почвы.

 

Рис. 5. Динамика запаса свободного кислорода в атмосфере (по данным Будыко и др., (1985)).

 

Современная кислородная атмосфера планеты образовалась в результате двух процессов: 1) жизнедеятельности фотосинтезирующих организмов, от первичных оксигенных бактерий до современных покрытосеменных растений; 2) вывода органического углерода из биосферного круговорота. В процессе фотосинтеза кислород выделяется в свободном виде[2], в то время как углерод входит в состав органического вещества. Подавляющая часть органического вещества после ряда трансформаций (первичные продукты фотосинтеза, биомасса, детрит, гумус) окисляется живыми организмами с образованием углекислого газа. Однако в каждом из таких циклов небольшая часть органического вещества выводится из круговорота и захоранивается в осадочных породах. Так как аэробная биосфера существует уже около 2 млрд. лет, подавляющая часть углерода, входившего в состав первичной атмосферы, уже выведена из биосферного круговорота и находится в пассивном виде в осадочных породах литосферы. Причем в концентрированной форме (то есть в залежах ископаемого топлива) находится сравнительно небольшая часть захороненного углерода (24 320 Гт КЭ). Около 32 000 000 Гт КЭ органического вещества диспергировано в осадочных породах (Keeling et al., 1993) и практически недоступно для возвращения в биосферный круговорот. Кислород же, прежде соединенный с углеродом этого органического вещества, находится в атмосфере. Именно недоступность углерода органического вещества осадочных пород и объясняет столь малую потенциальную возможность человечества влиять на содержание кислорода атмосферы.

Содержание кислорода в воздухе и самочувствие людей

Содержание кислорода в атмосферном воздухе является одним из важнейших метеорологических факторов, определяющих здоровье и самочувствие людей. Этот фактор во многом определяет повышенную общественную обеспокоенность по отношению к использованию кислородного ресурса атмосферы. Следует отметить, что самочувствие людей определяется не концентрацией кислорода в воздухе (то есть относительной долей по кислорода отношению к общему газовому составу воздуха), а его весовым содержанием в единице объема, называемым также парциальной плотностью и измеряемым в г на м3. В медицине разработана классификация типов погоды (Никберг и др., 1986), среди критериев которой используется и весовое содержание кислорода. Выделяют три основных типа погоды: 1) благоприятную (колебание весового содержания кислорода не превышают 5 г м-3), 2) умеренно неблагоприятную (снижение весового содержания кислорода на 5-10 г м-3 при его содержании менее 275-280 г м-3), 3) неблагоприятную (падение весового содержания кислорода до 270 г м-3 и менее или его уменьшение более чем на 15 г м-3). Главной колебаний весового содержания кислорода в воздухе являются изменения атмосферного давления. Из школьного курса физики известно, что плотность и давление газа взаимосвязаны. Чем больше давление, тем больше плотность, то есть большее количество молекул содержится в единице объема. При установлении зоны пониженного атмосферного давления или при прохождении теплого атмосферного фронта в полном соответствии с физическими законами весовое содержание кислорода в единице объема уменьшается, но при этом концентрация кислорода не меняется.

Еще в большей степени физиологический дефицит кислородом ощущается при подъеме на высоту, например, в горной местности. Среднее атмосферное давление в Алма-Ате, например, составляет 90% от давления в Москве, соответственно, и весовое содержание кислорода настолько же меньше. Однако человеческий организм способен достаточно успешно адаптироваться к такому или даже большему снижению весового содержания кислорода по прошествию нескольких дней или недель. Этим свойством организма пользуются, например, альпинисты, проходящие период адаптации перед штурмом высоких горных вершин.

Приведенные выше критерии классификации типов погоды позволяют оценить, какие колебания весового содержания кислорода вызывают ухудшения самочувствия. При умеренно-неблагоприятной погоде весовое содержание кислорода снижается на 2-3%, при неблагоприятной – более чем на 5%. Годовое снижение содержания кислорода составляет ныне 0.0016%, что в 1000 раз меньше, чем уровень колебаний кислорода при умеренно-неблагоприятной погоде. Следовательно, нельзя всерьез говорить о каком-либо влиянии антропогенного потребления кислорода на здоровье и самочувствие людей.

В российском обществе широко распространено мнение о недостатке кислорода в северных широтах. Это вопрос часто обсуждается на страницах периодической печати и в Интернете. Однако физические причины для такого явления отсутствуют. Концентрация кислорода практически одинакова в различных районах земного шара, весовое содержание кислорода в северных широтах существенно больше по сравнению с умеренными за счет более высокого давления. Именно высокое весовое содержание кислорода в атмосферном воздухе и приводит к развитию в организме человека так называемой вторичной гипероксической гипоксии (Овчарова, 1981), то есть в данном случае имеет место обратный физиологический ответ человеческого организма. Этот пример приводит к парадоксальному выводу – с физиологической точки зрения человек более легко адаптируется к недостатку весового содержания кислорода, чем к его избытку.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: