Кластерные вычислительные системы




Специальность: 2-40 02 01 «Вычислительные машины системы и сети»

Группа: ВМС-10

Реферат

Тема: Ключевые особенности, достоинства и недостатки кластерных структур

 

Разработал Сень С.А

Проверила Брынина Е.Н.

 


 

Кластерные вычислительные системы

Одно из самых современных направлений в области создания вычислительных систем — это кластеризация. По производительности и коэффициенту готовности кластеризация представляет собой альтернативу симметричным мультипроцессорным системам.

Как мы уже отмечали, вычислительный кластер — это М1МР-система (мультикомпьютер), состоящая из множества отдельных компьютеров (узлов вычислительного кластера), объединенных единой коммуникационной средой.

В качестве узла кластера может выступать как однопроцессорная ВМ, так и ВС типа SMP или МРР. Каждый узел в состоянии функционировать самостоятельно и отдельно от кластера.

Каждый узел имеет свою локальную оперативную память. При этом общей физической оперативной памяти для узлов, как правило, не существует. Коммуникационная среда вычислительных кластеров обычно позволяет узлам взаимодействовать между собой только посредством передачи сообщений. В целом вычислительный кластер следует рассматривать как единую аппаратно-программную систему, имеющую единую коммуникационную систему, единый центр управления и планирования загрузки.

Архитектура кластерных вычислений сводится к объединению нескольких узлов высокоскоростной сетью. Наряду с термином «кластерные вычисления», часто применяются такие названия, как кластер рабочих станций (workstation cluster), гипервычисления (hypercomputing), параллельные вычисления на базе сети (network-based concurrent computing).

 

Перед кластерами ставятся две задачи:

• достичь большой вычислительной мощности;

• обеспечить повышенную надежность ВС.

Первый коммерческий кластер создан корпорацией «DEC» в начале 80-х гг. прошлого века. В качестве узлов кластеров могут использоваться как одинаковые ВС (гомогенные кластеры), так и разные (гетерогенные кластеры). По своей архитектуре кластерная ВС является слабосвязанной системой.

 

Преимущества, достигаемые с помощью кластеризации:

• абсолютная масштабируемость. Возможно создание больших кластеров, превосходящих по вычислительной мощности даже самые производительные одиночные ВМ. Кластер в состоянии содержать десятки узлов, каждый из которых представляет собой мультиплексор;

• наращиваемая масштабируемость. Кластер строится так, что его можно наращивать, добавляя новые узлы небольшими порциями;

• высокий коэффициент готовности. Поскольку каждый узел кластера — самостоятельная ВМ или ВС, отказ одного из узлов не приводит к потере работоспособности кластера. Во многих системах отказоустойчивость автоматически поддерживается программным обеспечением;

• превосходное соотношение цена/производительность. Кластер любой производительности можно создать, соединяя стандартные ВМ, при этом его стоимость будет ниже, чем у одиночной ВМ с эквивалентной вычислительной мощностью.

Узлы кластера контролируют работоспособность друг друга и обмениваются специфической информацией. Контроль работоспособности осуществляется с помощью специального сигнала, называемого heartbeat («сердцебиение»). Этот сигнал передается узлами кластера друг другу, чтобы подтвердить их нормальное функционирование.

Неотъемлемой частью кластера является специализированное программное обеспечение (ПО), на которое возлагается задача обеспечения бесперебойной работы при отказе одного или нескольких узлов. Такое ПО производит перераспределение вычислительной нагрузки при отказе одного или нескольких узлов кластера, а также восстановление вычислений при сбое в узле. Кроме того, при наличии в кластере совместно используемых дисков кластерное программное обеспечение поддерживает единую файловую систему.

Узлы вычислительного кластера могут функционировать под управлением разных операционных систем. Однако чаще всего используются стандартные UNIX-подобные системы. Заметим, что с точки зрения разработки прикладных параллельных программ нет каких-либо принципиальных различий между однородными вычислительными кластерами и МРР-системами.

 

Высокоскоростные кластеры используются в областях, которые требуют значительной вычислительной мощности. Кластеры высокой готовности используются везде, где стоимость возможного простоя превышает стоимость затрат, необходимых для построения отказоустойчивой системы.

Производительность вычислительного высокоскоростного кластера, очевидно, зависти от производительности его узлов. С другой стороны, производительность кластера, как и всякой системы с распределенной памятью, сильно зависит от производительности коммуникационной среды. Обычно при построении вычислительных кластеров используют достаточно дешевые коммуникационные среды. Такие среды обеспечивают, на один — два порядка более низкую производительность чем производительность коммуникационных сред суперкомпьютеров. Поэтому находится не так много задач, которые могут достаточно эффективно решаться на больших кластерных системах.

 

Влияние производительности коммуникационной среды на общую производительность кластерной системы зависит от характера выполняемой задачи. Если задача требует частого обмена данными между подзадачами, которые решаются на разных узлах вычислительного кластера, то быстродействию коммуникационной среды следует уделить максимум внимания. Соответственно, чем меньше взаимодействуют части задачи между собою, тем меньше внимания можно уделить быстродействию коммуникационной среды.

Эффективная производительность кластерных вычислительных систем (real applications performance, RAP) оценивается как 5—15% от их пиковой производительности (Peak Advertised Performance, PAP). Для сравнения: у лучших малопроцессорных систем из векторных процессоров это соотношение оценивается как 30—50%.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-03-02 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: