Процесс обслуживания как марковский случайный процесс.




В указанных нами предположениях о потоке требований и о длительности обслуживания задачи теории массового обслуживания приобретают некоторые черты, облегчающие проведение исследований. Мы отмечали уже вычислительную простоту. Те­перь отметим более принципиальное соображение, которое ста­нем развивать применительно к изучаемой задаче.

В каждый момент рассматриваемая система может находить­ся в одном из следующих состоянии: в момент t в системе на­ходятся k требовании (k=0, 1, 2,...). Если k rn, то в систе­ме находятся и обслуживаются k требований, а m-k - приборов свободны. Если k m, то m требований обслуживаются, а k-m находятся в очереди и ожидают обслуживания. Обозначим через состояние, когда в системе находятся k требований. Таким образом, система может находиться в состояниях ... Обозначим через вероятность того, что система в мо­мент t окажется в состоянии .

Сформулируем, в чем заключается особенность изучаемых нами задач в сделанных предположениях. Пусть в некоторый момент наша система находилась и состоянии . Докажем, что последующее течение процесса обслуживания не зависит в смысле теории вероятностей от того, что происходило до момен­та . Действительно, дальнейшее течение обслуживания пол­ностью определяется тремя следующими факторами:

моментами окончания обслуживаний, производящихся в мо­мент ;

моментами появления новых требований;

длительностью обслуживания требований, поступивших после .

В силу особенностей показательного распределения длитель­ность остающейся части обслуживания не зависит от того, как долго уже продолжалось обслуживание до момента . Так как поток требований простейший, то прошлое не влияет на то, как много требований появится после момента . Наконец длительность обслуживания требований, появившихся после , никак не зависит от того, что и как обслуживалось до момента .

Известно, что случайные процессы, для которых будущее развитие зависит только от достигнутого в данный момент состояния и не зависит от того, как происходило развитие в прошлом, называются процессами Маркова или же процессами без последействия. Итак, система с ожиданием в случае простейшего потока и показательного времени обслуживания представляет собой случайный процесс Маркова. Это обстоятельство об­легчает дальнейшие рассуждении.

3. Составление уравнений.

Задача теперь состоит в том, чтобы найти те уравнения, которым удовлетворяют вероятности . Одно из уравнения очевидно, a именно для каждого t

(2)

Найдём сначала вероятность того, что и момент t .+h все приборы свободны. Это может произойти следующими способами:

· в момент t все приборы были свободны и за время h новых требований не поступало;

· в момент t один прибор был занят обслуживанием требования, все остальные приборы свободны; за время h обслуживание требования было завершено и новых требований не поступило.

Остальные возможности, как-то: были заняты два или три прибора и за время h работа на них біла закончена - имеют вероятность о(h), как легко в этом убедится.

Вероятность первого из указанных событий равна

,

вероятность второго события

.

Таким образом

.

Отсюда очевидным образом приходим уравнению

Перейдём теперь к составлению уравнений для при 1. Рассмотрим отдельно два различных случая: 1 и . Пусть в начале 1 . Перечислим только существенные состояния, из которых можно прийти в состояние в момент t+h. Эти состояния таковы:

В момент t система находилась в состоянии , за время h новых требований не поступило и ни один прибор не окончил обслуживания. Вероятность этого события равна:

В момент t система находилась в состоянии , за время h поступило новое требование, но ни одно ранее находившееся требование не было закончено обслуживанием. Вероятность этого события равна

В момент t система находилась в состоянии , за время h новых требований не поступило, но одно требование было обслужено. Вероятность этого равна

Все остальные мыслимые возможности перехода в состояние за промежуток времени h имеют вероятность, равную о(h).

Собрав воедино найденные вероятности, получаем следующее равенство:

Несложные преобразования приводят от этого равенства к такому уравнению для 1 ;

(4)

Подобные же рассуждения для приводят к уравнению

(5)

Для определения вероятностей получили бесконечную систему дифференциальных уравнений (2)-(5). Её реше­ние представляет несомненные технические трудности.

4. Определение стационарного решения.

В теории массового обслуживания обычно изучают лишь установившееся решение для . Существование таких решений устанавливается так называемыми эргодическими теоремами, некоторые из них позд­нее будут установлены. В рассматриваемой задаче оказывается, что предельные или, как говорят обычно, стационарные вероятности существуют. Введём для них обозначения . За­метим дополнительно, что при .

Сказанное позволяет заключить, что уравнения (3), (4), (5) для стационарных вероятностей принимают следующий вид:

(6)

при 1

(7)

при

(8)

К этим уравнениям добавляется нормирующее условие

(9)

Для решения полученной бесконечной алгебраической системы введём обозначения: при 1

при

Система уравнений (6)-(8) в этих обозначениях принимает такой вид:

при

Отсюда заключаем, что при всех

т.е. при 1

(10)

и при

(11)

Введём для удобства записи обозначение

.

Уравнение (10) позволяет заключить, что при 1

(12)

При из (11) находим, что

и, следовательно, при

(13)

Остаётся найти . Для этого в (9) подставляем выражения из (12) и (13). В результате

так как бесконечная сумма, стоящая в квадратных скобках, сходится только при условии, что

(14)

то при этом предположении находим равенство

(15)

Если условие (14) не выполнено, т.е. если , то ряд, стоящий в квадратной скобке уравнения для определения , расходится и, значит, должно быть равно 0. Но при этом, как следует из (12) и (13), при всех оказывается .

Методы теории цепей Маркова позволяют заключить, что при с течением времени очередь стремится к по ве­роятности.

Поясним полученный результат на нескольких практических примерах, которые покажут, что обычные в практической деятельности подсчеты, основанные на чисто арифметических соображениях, при которых не учитывается специфика случайных колебаний в поступлении требований на обслуживание, приводят к серьезным просчетам.

Пусть врач успевает удовлетворительно осмотреть больного и заполнить его историю болезни в среднем за 15 минут. Планирующие органы из этого обычно делают вывод: за четырёхчасовый рабочий день врач должен принимать 16 человек. Однако больные приходят в случайные моменты времени. В ре­зультате при таком подсчете пропускной способности врача к нему неизбежно скапливается очередь, так как при проведен­ном подсчете принимается равным 1. Те же заключения от­носятся и к расчету числа коек в больницах, числа работа­ющих касс в магазинах, числа официантов в ресторанах и т. д. К сожалению, некоторые экономисты совершают такую же ошибку и при расчете погрузочных средств в карьерах, числе приемщиков на элеваторах, числе причалов в морских портах и пр.

Во всем дальнейшем мы предполагаем, что условие (14) выполнено.

5. Некоторые подготовительные результаты.

Для задачи с ожиданием основной характеристикой качества обслуживания является длительность ожидания требованием начала обслуживания. Длительность ожидания представляет собой случайную величину, которую обозначим буквой . Рассмотрим сейчас только задачу опреде­ления распределения вероятностей длительности ожидания в уже установившемся процессе обслуживания. Обозначим далее через вероятность того, что длительность ожидания превзойдёт t, и через вероятность неравенства, указанного в скобке при условии, что в момент поступления требования, для которого подсчитывается длительность ожидания, в очереди уже находится k требований. В силу формулы полной вероятности имеем равенство

(16)

Прежде чем преобразовать эту формулу к виду, удобному для использования, приготовим некоторые необходимые для дальнейшего сведения. Прежде всего для случаев m=1 и m=2 найдем простые формулы для . Несложные преобразования приводят к таким равенствам: при m= 1

=1- , (17)

а при m=2

(18)

Вычислим теперь вероятность того, что все приборы будут заняты в какой-то наудачу взятый момент. Очевидно, что эта вероятность равна

(19)

Эта формула для m=1 принимает особенно простой вид:

(20)

при m=2

(21)

В формуле (19) может принимать любое значение от 0 до m (исключительно). Так что в формуле (20) < 1, а в (21) <2.

6. Определение функции распределения длительности ожи­дания.

Если в момент поступления требования в очереди уже находились k-m требований, то, поскольку обслуживание про­исходит в порядке очередности, вновь поступившее требование должно ожидать, когда будут обслужены k-m+ 1 требований. Пусть означает вероятность того, что за промежуток вре­мени длительности t после поступления интересующего тре­бования закончилось обслуживание ровно s требований. Ясно, что при имеет место равенство

Так как распределение длительности обслуживания предположено показательным и не зависящим ни от того, сколько требований находится в очереди, ни от того, как велики длительности обслуживания других требований, то вероятность за время t не завершить ни одного обслуживания (т.е. вероятность того, что не освободится ни один из приборов) равна

Если все приборы заняты обслуживанием и ещё имеется достаточная очередь требований, которые ожидают обслуживания, то поток обслуженных требований будет простейшим. Действи­тельно, в этом случае все три условия — стационарность, отсут­ствие последействия и ординарность — выполнены. Вероятность освобождения за промежуток времени t ровно s приборов равна (это можно показать и простым подсчетом)

Итак,

и, следовательно,

Но вероятности известны:

поэтому

Очевидными преобразованиями приводим правую часть по­следнего равенства к виду

=

.

Из формул (18) и (19) следует, что поэтому при m 0

(22)

Само собой разумеется, что при t 0

Функция имеет в точке t=1 разрыв непрерывности, равный вероятности застать все приборы занятыми.

7. Средняя длительность ожидания.

Формула (22) позволяет находить все интересующие числовые характеристики дли­тельности ожидания. В частности, математическое ожидание длительности ожидания начала обслуживания или, как предпо­читают говорить, средняя длительность ожидания равна

Несложные вычисления приводят к формуле

(23)

Дисперсия величины равна

Формула (23) даёт среднюю длительность ожидания одного требования. Найдем среднюю потерю времени требованиями, пришедшими в систему обслуживания в течение промежутка времени T. За время T в систему поступает требований и среднем; общая потеря ими времени па ожидание в среднем равна

(24)

Приведем небольшие арифметические подсчеты, которые про­демонстрируют нам, как быстро возрастают суммарные потери времени па ожидание с изменением величины . При этом мы ограничиваемся случаем Т=1 и рассматриваем лишь самые малые значения т: т =1 и т=2.

При т =1 в силу (20)

При р=0,1; 0,3; 0,5; 0,9 значение а приблизительно равно 0,011; 0,267; 0,500; 1,633; 8,100.

При m=2 в силу (24)

При =0,1; 1,0; 1,5; 1,9 значение а приблизительно равно 00003; 0,333; 1,350; 17,537.

Приведённые данные иллюстрируют хорошо известный факт относительно большой чувствительности систем обслуживания, уже достаточно сильно загруженных, к возрастанию загрузки. Потребитель при этом сразу ощущает значительное возрастание длительности ожидания. Этот факт обязательно следует учитывать при расчёте загрузки оборудования в системах массового обслуживания.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: