Квантовые компьютеры – будущее





Сверхъестественный мир квантовой механики не подчиняется законам общей классической физики. Квантовый бит (qubit) не существует в типичных 0 или 1-бинарных формах сегодняшних компьютеров – квантовый бит может существовать в одной из них или же в обеих системах одновременно. Это едва ли заметное различие и есть причина, почему квантовые транзисторы дают возможность компьютеру работать в 1 000 000 000 раз быстрее, чем сегодняшние компьютеры! Если вы думаете, что компьютер, работающий при 4 ГГц, быстр, то опробуйте компьютер будущего, работающий при 40000 ГГц. Одновременно с существованием множества препятствий, которые необходимо преодолеть, каждый день открываются новые методики и совершаются новые открытия. Многие люди думают, что квантовые компьютеры могут стать действительностью в течение всего нескольких 5-10 лет.разностной маши-ной. Аналитическая машина предназначалась для вычисления любого алгоритма (в нашей терминологии) и была задумана чисто механической.

 

Каждый из нас поражается каждый раз, когда новые компьютеры становятся более мощными и могут поддерживать больше функций. Только что компьютеры стали компактными, и снова компьютеры сделают следующий гигантский шаг в течение нескольких лет. Мы видели, как компьютеры уменьшаются в размере, как размер микрочипов становится меньше и меньше. Теперь ученые знают, что мы можем уменьшить размер тех же самых микрочипов до размера одного атома! Ниже приведены некоторые из самых интересных достижений в компьютерных технологиях.

Современные полупроводниковые компьютеры скоро исчерпают свой потенциал, и даже при условии перехода к трехмерной архитектуре микросхем их быстродействие будет ограничено значением 1015 операций в секунду. Поиски новых путей совершенствования компьютеров ведутся во многих направлениях. Существует несколько возможных альтернатив замены современных компьютеров — квантовые компьютеры, нейрокомпьютеры и оптические компьютеры. При разработке «компьютеров будущего» используется широкий спектр научных дисциплин: молекулярная электроника, молекулярная биология, робототехника, квантовая механика, органическая химия и др. Рассмотрим основные особенности этих компьютеров.

Оптический компьютер. В оптических компьютерах носителем информации является световой поток. Применение оптического излучения в качестве носителя информации имеет ряд преимуществ по сравнению с электрическими сигналами:

♦ скорость распространения светового сигнала выше скорости электрического;


♦ световые потоки, в отличие от электрических, могут пересекаться друг с другом;


♦ световые потоки могут передаваться по свободному пространству;


♦ возможность создания параллельных архитектур.

Оптические технологии важны не только для создания оптических компьютеров, но также и для оптических коммуникаций и сети Интернет. Создание большего количества параллельных архитектур, по сравнению с традиционными электронными компьютерами, является основным достоинством оптических компьютеров, оно позволяет преодолеть ограничения по быстродействию и параллельной обработке информации.

Нейрокомпьютер. Для решения некоторых задач требуется создание эффективной системы искусственного интеллекта, которая могла бы обрабатывать информацию, не затрачивая много вычислительных ресурсов. И прекрасным аналогом для решения такой проблемы может стать мозг и нервная система живых организмов, которые позволяют эффективно обрабатывать сенсорную информацию. Мозг человека состоит из 10 миллиардов нервных клеток — нейронов. Аналогично должен быть построен и нейрокомпьютер, который моделирует функции нейронов.

Появление нейрокомпьютеров, часто называемых биокомпьютерами, во многом связывают с развитием нанотехнологий, которыми активно занимаются ученые многих стран. Нейрокомпьютеры предполагается строить на базе нейрочипов (искусственных нейронах) и нейроноподобных связях, которые функционально ориентированы на конкретный алгоритм, на решение конкретной задачи. Поэтому для решения задач разного типа требуется нейронная сеть разной топологии (разновидностей соединения нейрочипов). Один искусственный нейрон может использоваться в работе нескольких алгоритмов обработки информации в сети, и каждый алгоритм реализуется при помощи некоторого количества искусственных нейронов. Нейронная сеть (перцептрон) может обучаться распознаванию образов. Перспективность создания нейрокомпьютеров состоит в том, что искусственные структуры, имеющие свойства мозга и нервной системы, имеют ряд важных особенностей: параллельность обработки информации, способность к обучению, способность к автоматической классификации, высокая надежность, ассоциативность.

Квантовый компьютер. В основе работы квантового компьютера лежат законы квантовой механики. Квантовая механика позволяет установить способ описания и законы движения микрочастиц (атомов, молекул, атомных ядер) и их систем. Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомных ядер, изучать свойства элементарных частиц.

Физический принцип действия квантового компьютера основан на изменении энергии атома. Она имеет дискретный ряд значений EQ, EI,... Еп, называемый энергетическим спектром атома. Излучение и поглощение атомом электромагнитной энергии происходит отдельными порциями — квантами, или фотонами. При поглощении фотона энергия атома увеличивается и осуществляется переход с нижнего на верхний уровень, при излучении фотона совершается обратный переход вниз. Поэтому в качестве основной единицы квантового компьютера введено понятие «кубит» (qubit, Quantum Bit) по аналогии с традиционным компьютером, где используется понятие «бит». Известно, что бит имеет лишь два состояния — 0 и 1, тогда как состояний кубита значительно больше. Поэтому для описания состояния квантовой системы было введено понятие волновой функции в виде вектора с большим числом значений.

Для квантовых компьютеров так же, как и для классических, введены элементарные квантовые логические операции: дизъюнкция, конъюнкция и отрицание, с помощью которых будет организована вся логика квантового компьютера. При создании квантового компьютера основное внимание уделяется вопросам управления кубитами при помощи вынужденного излучения и недопущении спонтанного излучения, которое нарушит работу всей квантовой системы.

 Можно предположить, что объединение квантовых, оптических и нейронных компьютеров даст миру мощную гибридную вычислительную систему. Такую систему от обычной будут отличать огромная производительность (ориентировочно 1051), за счет параллелизма выполнения операций, а также возможности эффективной обработки и управления сенсорной информацией. Для производства «компьютеров будущего» будут необходимы значительные экономические затраты, в несколько десятки раз превышающие затраты на производство современных полупроводниковых компьютеров.

 

 

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: