Комплексные уравнения и векторные диаграммы трансформатора. Схемы замещения




 

В реальном трансформаторе кроме основного магнитного потока Ф, который замыкается по стали и сцеплен со всеми обмотками трансформатора, имеются также потоки рассеяния Фσ1 и Фσ2, сцепленные только с одной из обмоток.

Потоки рассеяния не участвуют в передаче энергии, но создают в каждой из обмоток соответствующие ЭДС самоиндукции.

С учетом этих ЭДС и падений напряжения в активных сопротивлениях обмоток можно составить комплексные уравнения для первичной и вторичной обмоток трансформатора

С учетом получаем систему уравнений:

где - сопротивление нагрузки, подключенной к трансформатору.

Т.к. потоки рассеяния полностью или частично замыкаются по воздуху, то они пропорциональны МДС соответствующих обмоток или соответствующими токами:

величины х1 и х2 называют индуктивными сопротивлениями обмоток трансформатора, обусловленными потоками рассеяния.

Т.к. векторы ЭДС отстают от соответствующих потоков и токов на 900, то

При этом комплексные управления трансформатора примут вид

Замена ЭДС падениями напряжений показывает значение потоков рассеяния: они создают индуктивные падения напряжений в обмотках, не участвуя в передаче энергии из одной обмотки в другую.

Проще становится и построение векторной диаграммы соответствующей системе уравнений, в которой целесообразно также заменить падение напряжения в нагрузке величины , т.е. вторичным напряжением трансформатора из формулы 2

(4)

Векторную диаграмму вторичной обмотки трансформатора строим согласно уравнению 4. Характер диаграммы определяется током нагрузки , которая принимается заданным по величине и фазе. Итак, задаваясь векторами вторичного тока .(например для активно-индуктивной нагрузки)

 

МДС оказывает своей реактивной составляющей на магнитопровод размагничивающее действие:

- реактивная составляющая тока нагрузки.

Построение диаграммы начинаем с вектора максимального значения основного магнитного потока . Вектор тока опережает по фазе вектор потока на угол γ=5..100. Вектор как и отстают от потока на 900. [ - приведенная вторичная ЭДС ]. Для определения угла сдвига фаз между и определим характер нагрузки трансформатора:() активно-индуктивная, тогда вектор отстает по фазе от на угол , определяемый как характером внешней нагрузки, так и собственным сопротивлением вторичной обмотки.

Чтобы построить из вектора вычитаем Построив вектор получили треугольник внутренних падений напряжения во вторичной цепи. Затем из т.О проводим вектор , который опережает по фазе ток на угол .

Вектор первичного тока строили как сумму . Строим , для чего к вектору , опережающему по фазе вектор потока Фm на 900, прибавляем векторы внутренних падений напряжения первичной обмотки: вектор , опережает на 900, Соединяя таким образом с концом вектора получим вектор , который опережает вектор на φ1. Когда векторная диаграмма трансформатора строят с целью определения ЭДС, то заданными являются параметры U2, I2, Cosφ2. Зная определяют и строят векторы, под фазовым углом φ2.

Т.к. ток отстает по фазе от ЭДС на угол φ2, то в случае активно-емкостной нагрузки, когда и ток нагрузки опережает по фазе ЭДС на угол φ2. Векторная диаграмма имеет вид отличный от акт-инд. нагрузки.

При значительной емкостной составляющей нагрузки падение напряжения в емкостной составляющей сопротивления нагрузки и индуктивное падение напряжение рассеяния во вторичной обмотке частично компенсируют друг друга. В результате может оказаться больше . Реактивная составляющая вторичного тока совпадает по фазе с реактивной составляющей тока х.х. , т.е. оказывает на магнитопровод подмагничивающее действие.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: