Ознакомьтесь Закон о политических партиях




В заключительные положения закона 7 ФЗ входят предписания о его вступлении в силу, а также приведение иных законодательных актов в правовое соответствие. Закон вступил в силу в день своего официального опубликования – 10 января 2002. С данного момента он претерпел ряд изменений, нацеленных на устранение неточных формулировок и актуализацию правовых норм. Последние поправки были внесены в 2016 году.

Изменения в экологическом законе «Об охране окружающей среды» последний раз вносились в 2016 году. Поправки были введены различными документами 5 апреля, 23 июня и 3 июля. Общий перечень определяется следующими изменениями:

· в статьях 1, 19, 29 и 70 после слов «документы » были добавлены слова «, федеральные нормы и правила » в соответствующих падежах;

· статья 78 закона об экологии дополнилась пунктом 2.1 об учете затрат на устранение нанесенного окружающей среде;

· была добавлена глава 14.1 о ликвидации вреда, нанесенного окружающей среде, соответствующие поправки были внесены также в статьи 1, 5.1, 28.1 и 65;

· в закон об экологии введена глава 9.1 о лесопарковых зеленых поясах, дополнительно была скорректирована редакция статьи 44, а также добавлены пункты 4-7 в статью 68 о возможности граждан оказывать помощь государственным службам в обеспечении экологической безопасности;

· в пункт 1 статьи 50 добавлен абзац о запрете выращивания растений и животных с генно-инженерным материалом, исключение составляют лишь научно-исследовательские работы и проведение экспертизы.

Водный кодекс Российской Федерации — кодифицированный нормативно-правовой акт, являющийся основным источником, регулирующим отношения в сфере водопользования в России.

Водный кодекс Российской Федерации принят Государственной думой 12 апреля 2006 года, одобрен Советом Федерации 26 мая 2006 года и подписан Президентом Российской Федерации 3 июня 2006, вступил в силу 1 января 2007 года (согласно Федеральному закону от 3 июня 2006 года № 73-ФЗ «О введении в действие Водного кодекса Российской Федерации»).

Водный кодекс состоит из 69 статей в 7 главах:

1. Общие положения

2. Право собственности и иные права на водные объекты

3. Договор водопользования. Решение о предоставлении водного объекта в пользование

4. Управление в области использования и охраны водных объектов

5. Водопользование

6. Охрана водных объектов

7. Ответственность за нарушение водного законодательства.

 

) Биогеохимические круговороты.

В отличие от энергии, которая используется организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, это и называется биохимическими круговоротами. Из 90 с лишним элементов, которые встречаются в природе, только 40 нужны живым организмам. Наиболее важные для них и нужные в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и используется организмами при дыхании. Азот вытягивается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в нее другими бактериями.

Кругооборот элементов и веществ осуществляется за счет саморегулирующихся процессов, в которых принимают участие все составные экосистем. Эти процессы являются безвыходными. В природе нет ничего напрасного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот. Существует закон глобального замыкания биохимического кругооборота в биосфере, действующий на всех этапах ее развития, как и правило увеличения замкнутости биохимического кругооборота в походке сукцессии. В процессе эволюции биосферы увеличивается роль биологических компонентов в замыкании биохимического кругооборота. Еще большую роль в биохимическом кругообороте проявляет человек. Но ее роль осуществляется в противоположном направлении. Человек усиливает кругооборот веществ, который уже сложился, и в этом сказывается его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день.

Когда 2 млрд. лет тому на Земле появилось жизнь, атмосфера состояла из вулканических газов. В ней было много углекислого газа и мало кислорода (если вообще был), и первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород, и уменьшалось содержимое углекислого газа. Ныне содержимое углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглощающей возможности «зеленого пояса». Последнее есть результат уменьшения количества самых зеленых растений, а также связано с тем, что пыль и прочие загрязняющие частицы в атмосфере отбивают те лучи, которые поступают в атмосферу. В результате антропогенной деятельности степень замкнутости биохимических кругооборотов уменьшается. Хотя она довольно высокая (для разнообразных элементов и веществ она не одинаковая), но, тем не менее, не абсолютная, что и показывает пример возникновения кислородной атмосферы. Иначе невозможна была бы эволюция (высочайшая степень замкнутости биохимических кругооборотов наблюдается в тропических экосистемах — наиболее давних и консервативных).

Таким образом, следует говорить не об изменении человеком того, что не должно изменяться, а скорее о влиянии человека на скорость и направление изменений и на распространение их границ, которая поднимает правило меры преобразования природы. Последнее формулируется таким образом: в процессе эксплуатации естественных систем нельзя превышать некоторые границы, которые разрешают этим системам сохранять равновесие.

2) Круговороты вещества в биосфере.

Процессы фотосинтеза органического вещества из неорганических компонентов длятся миллионы лет и за такое время химические элементы должны были перейти из одной формы в другую. Однако этого не происходит благодаря их кругообороту в биосфере. Ежегодно фотосинтезирующие организмы усваивают почти 350 млрд. тонн углекислого газа, выделяют в атмосферу около 250 млрд. тонн кислорода и расщепляют 140 млрд. тонн воды, образовывая свыше 230 млрд. тонн органического вещества (в перерасчете на сухой вес).

Огромные количества воды проходят через растения и водоросли в процессе обеспечения транспортной функции и выпаривания. Это приводит к тому, что вода поверхностного пласта океана фильтруется планктоном за 40 суток, а вся другая вода океана — приблизительно, чем год. Весь углекислый газ атмосферы возобновляется за несколько сотен лет, а кислород за несколько тысяч лет. Ежегодно фотосинтезом в кругооборот включается 6 млрд. тонн азота, 210 млрд. тонн фосфора и большое количество других элементов (калий, натрий, кальций, магний, сера, железо и др.). Существование этих кругооборотов придает экосистемам определенную продолжительность.

Различают два основных кругооборота: большой (геологический) и маленький (биологический).

Большой кругооборот, длится миллионы лет и состоит в том, что горные породы подлежат разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов на протяжении продолжительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается снова.

Маленький кругооборот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самых этих растений, так и других организмов (как правило животных), которые съедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) снова разлагаются к минеральным компонентам, доступных растениям и что втягиваются ими в потоки вещества. Кругооборот химических веществ из неорганической среды через растительные и животные организмы назад в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биохимическим циклом. В такие циклы втянуты практически все химические элементы и прежде всего те, что принимают участие в построении живой клетки. Так, тело человека состоит из кислорода (62.8%), углерода (19.37%), водорода (9.31%), азота (5.14%), кальция (1.38%), фосфора (0.64%) и еще приблизительно 30 элементов.

3) Круговорот углерода.

Углерод в биосфере часто представлен наиболее подвижной формой — углекислым газом. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры.

Миграция углекислого газа в биосфере Земли протекает двумя путями. Первый путь заключается в поглощении его в процессе фотосинтеза с образованием органических веществ и в последующем захоронении их в литосфере в виде торфа, угля, горных сланцев, рассеянной органики, осадочных горных пород. Так, в далекие геологические эпохи сотни миллионов лет назад значительная часть фотосинтезируемого органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась и постепенно погребалась под различными минеральными осадками. Находясь в породах миллионы лет, этот детрит под действием высоких температур и давления (процесс метаморфизации) превращался в нефть, природный газ и уголь, во что именно — зависело от исходного материала, продолжительности и условий пребывания в породах. Теперь мы в огромных количествах добываем это ископаемое топливо для обеспечения потребностей в энергии, а сжигая его, в определенном смысле завершаем круговорот углерода. Если бы ни этот процесс в истории планеты, вероятно, человечество имело бы сейчас совсем другие источники энергии, а может быть и совсем другое направление развития цивилизации.

По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где CO2 переходит в H2CO3, HCO31-, CO32-. Затем с помощью растворенного в воде кальция (реже магния) происходит осаждение карбонатов CaCO3 биогенным и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует еще ряд малых его круговоротов на поверхности суши и в океане.

В пределах суши, где имеется растительность, углекислый газ атмосферы поглощается в процессе фотосинтеза в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием CO2. Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания углекислого газа в атмосфере, связанное с ростом промышленного производства и транспорта.

 

4) Круговорот воды

Вода находится в постоянном движении. Испаряясь с поверхности водоемов, почвы, растений, вода накапливается в атмосфере и, рано или поздно, выпадает в виде осадков, пополняя запасы в океанах, реках, озерах и т.п. Таким образом, количество воды на Земле не изменяется, она только меняет свои формы — это и есть круговорот воды в природе. Из всех выпадающих осадков 80% попадает непосредственно в океан. Для нас же наибольший интерес представляют оставшиеся 20%, выпадающие на суше, так как большинство используемых человеком источников воды пополняется именно за счет этого вида осадков. Упрощенно говоря, у воды, выпавшей на суше, есть два пути. Либо она, собираясь в ручейки, речушки и реки, попадает в результате в озера и водохранилища — так называемые открытые (или поверхностные) источники водозабора. Либо вода, просачиваясь через почву и подпочвенные слои, пополняет запасы грунтовых вод. Поверхностные и грунтовые воды и составляют два основных источника водоснабжения. Оба этих водных ресурса взаимосвязаны и имеют как свои преимущества, так и недостатки в качестве источника питьевой воды.

Круговорот воды является одним из грандиозных процессов на поверхности земного шара. Он играет главную роль в связывании геологического и биотического круговоротов. В биосфере вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образуют малый круговорот. Если же водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее.

В этом случае часть осадков испаряется и поступает обратно в атмосферу, другая — питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоком, завершая тем самым большой круговорот. Важное свойство круговорота воды заключается в том, что он, взаимодействуя с литосферой, атмосферой и живым веществом, связывает воедино все части гидросферы: океан, реки, почвенную влагу, подземные воды и атмосферную влагу. Вода — важнейший компонент всего живого. Грунтовые воды, проникая сквозь ткани растения в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.

Наиболее замедленной частью круговорота воды является деятельность полярных ледников, что отражают медленное движение и скорейшее таяние ледниковых масс. Наибольшей активностью обмена после атмосферной влаги отличаются речные воды, которые сменяются в среднем каждые 11 дней. Чрезвычайно быстрая возобновляемость основных источников пресных вод и опреснение вод в процессе круговорота являются отражением глобального процесса динамики вод на земном шаре.

 

5) Круговорот углерода

Углерод в биосфере часто представлен наиболее подвижной формой — углекислым газом. Источником первичной углекислоты биосферы является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры.

Миграция углекислого газа в биосфере Земли протекает двумя путями. Первый путь заключается в поглощении его в процессе фотосинтеза с образованием органических веществ и в последующем захоронении их в литосфере в виде торфа, угля, горных сланцев, рассеянной органики, осадочных горных пород. Так, в далекие геологические эпохи сотни миллионов лет назад значительная часть фотосинтезируемого органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась и постепенно погребалась под различными минеральными осадками. Находясь в породах миллионы лет, этот детрит под действием высоких температур и давления (процесс метаморфизации) превращался в нефть, природный газ и уголь, во что именно — зависело от исходного материала, продолжительности и условий пребывания в породах. Теперь мы в огромных количествах добываем это ископаемое топливо для обеспечения потребностей в энергии, а сжигая его, в определенном смысле завершаем круговорот углерода. Если бы ни этот процесс в истории планеты, вероятно, человечество имело бы сейчас совсем другие источники энергии, а может быть и совсем другое направление развития цивилизации.

По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где CO2 переходит в H2CO3, HCO31-, CO32-. Затем с помощью растворенного в воде кальция (реже магния) происходит осаждение карбонатов CaCO3 биогенным и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует еще ряд малых его круговоротов на поверхности суши и в океане.

В пределах суши, где имеется растительность, углекислый газ атмосферы поглощается в процессе фотосинтеза в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием CO2. Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания углекислого газа в атмосфере, связанное с ростом промышленного производства и транспорта.

 

6) Круговорот кислорода

Кислород — наиболее активный газ. В пределах биосферы происходит быстрый обмен кислорода среды с живыми организмами или их остатками после гибели.

В составе земной атмосферы кислород занимает второе место после азота. Господствующей формой нахождения кислорода в атмосфере является молекула О2. Круговорот кислорода в биосфере весьма сложен, поскольку он вступает во множество химических соединений минерального и органического миров.

Свободный кислород современной земной атмосферы является побочным продуктом процесса фотосинтеза зеленых растений и его общее количество отражает баланс между продуцированием кислорода и процессами окисления и гниения различных веществ. В истории биосферы Земли наступило такое время, когда количество свободного кислорода достигло определенного уровня и оказалось сбалансированным таким образом, что количество выделяемого кислорода стало равным количеству поглощаемого кислорода.

 

7) Круговорот азота

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСОз, образует нитраты:

2HN0з + СаСОз = Са(NОз)2 + СОС + Н0Н

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих нитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде.

Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота. К таким процессам относятся, прежде всего происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий — «клубеньков», почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества.

Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений.

 

8) Круговорот фосфора

Фосфор входит в состав генов и молекул, переносящих энергию внутрь клеток. В различных минералах фосфор содержится в виде неорганического фосфатиона (PO43-). Фосфаты растворимы в воде, но не летучи. Растения поглощают PO43- из водного раствора и включают фосфор в состав различных органических соединений, где он выступает в форме так называемого органического фосфата. По пищевым цепям фосфор переходит от растений ко всем прочим организмам экосистемы. При каждом переходе велика вероятность окисления содержащего фосфор соединения в процессе клеточного дыхания для получения организмом энергии. Когда это происходит, фосфат в составе мочи или ее аналога вновь поступает в окружающую среду, после чего снова может поглощаться растениями и начинать новый цикл.

В отличие, например, от углекислого газа, который, где бы он ни выделялся в атмосферу, свободно переносится в ней воздушными потоками пока снова не усвоится растениями, у фосфора нет газовой фазы и, следовательно, нет "свободного возврата" в атмосферу. Попадая в водоемы, фосфор насыщает, а иногда и перенасыщает экосистемы. Обратного пути, по сути дела, нет. Что-то может вернуться на сушу с помощью рыбоядных птиц, но это очень небольшая часть общего количества, оказывающаяся к тому же вблизи побережья. Океанические отложения фосфата со временем поднимаются над поверхностью воды в результате геологических процессов, но это происходит в течение миллионов лет.

Следовательно, фосфат и другие минеральные биогены почвы циркулируют в экосистеме лишь в том случае, если содержащие их "отходы" жизнедеятельности откладываются в местах поглощения данного элемента. В естественных экосистемах так в основном и происходит. Когда же в их функционирование вмешивается человек, он нарушает естественный круговорот, перевозя, например, урожай вместе с накопленными из почвы биогенами на большие расстояния к потребителям.

 

 

9) Круговорот серы

Сера является важным составным элементом живого вещества. Большая часть ее в живых организмах находится в виде органических соединений. Кроме того, сера входит в состав некоторых биологически активных веществ: витаминов, а также ряда веществ, выступающих в качестве катализаторов окислительно-восстановительных процессов в организме и активизирующих некоторые ферменты.

Сера представляет собой исключительно активный химический элемент биосферы и мигрирует в разных валентных состояниях в зависимости от окислительно-восстановительных условий среды. Среднее содержание серы в земной коре оценивается в 0,047 %. В природе этот элемент образует свыше 420 минералов.

В изверженных породах сера находится преимущественно в виде сульфидных минералов: пирита, пирронита, халькопирита, в осадочных породах содержится в глинах в виде гипсов, в ископаемых углях — в виде примесей серного колчедана и реже в виде сульфатов. Сера в почве находится преимущественно в форме сульфатов; в нефти встречаются ее органические соединения.

В связи с окислением сульфидных минералов в процессе выветривания сера в виде сульфатиона переносится природными водами в Мировой океан. Сера поглощается морскими организмами, которые богаче ее неорганическими соединениями, чем пресноводные и наземные.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: