Свойства моделей и требования к ним




Казань-2017 г

 

 

Рассмотрим некоторые свойства моделей, которые позволяют в той или иной степени либо различать, либо отождествлять модель с оригиналом (объектом, процессом). Многие исследователи выделяют следующие свойства моделей: адекватность, сложность, конечность, наглядность, истинность, приближенность.

Проблема адекватности. Важнейшим требованием к модели является требование адекватности (соответствия) ее реальному объекту (процессу, системе и т.д.) относительно выбранного множества его характеристик и свойств.

Под адекватностью модели понимают правильное качественное и количественное описание объекта (процесса) по выбранному множеству характеристик с некоторой разумной степенью точности. При этом имеется в виду адекватность не вообще, а адекватность по тем свойствам модели, которые являются для исследователя существенными. Полная адекватность означает тождество между моделью и прототипом.

Математическая модель может быть адекватна относительно одного класса ситуаций (состояние системы + состояние внешней среды) и не адекватна относительно другого. Модель типа «черный ящик» адекватна, если в рамках выбранной степени точности она функционирует так же, как и реальная система, т.е. определяет тот же оператор преобразования входных сигналов в выходные.

Можно ввести понятие степени (меры) адекватности, которая будет меняться от 0 (отсутствие адекватности) до 1 (полная адекватность). Степень адекватности характеризует долю истинности модели относительно выбранной характеристики (свойства) изучаемого объекта. Введение количественной меры адекватности позволяет в количественном отношении ставить и решать такие задачи, как идентификация, устойчивость, чувствительность, адаптация, обучение модели.

Отметим, что в некоторых простых ситуациях численная оценка степени адекватности не представляет особой трудности. Например, задача аппроксимации заданного множества экспериментальных точек некоторой функцией.

Всякая адекватность относительна и имеет свои границы применения. Например, дифференциальное уравнение

отражает лишь изменение частоты w вращения турбокомпрессора ГТД при изменении расхода топлива GT и не более того. Оно не может отражать таких процессов, как газодинамическая неустойчивость (помпаж) компрессора или колебания лопаток турбины. Если в простых случаях бывает все ясно, то в сложных случаях неадекватность модели бывает не столь ясной. Применение неадекватной модели приводит либо к существенному искажению реального процесса или свойств (характеристик) изучаемого объекта, либо к изучению несуществующих явлений, процессов, свойств и характеристик. В последнем случае проверка адекватности не может осуществляться на чисто дедуктивном (логическом, умозрительном) уровне. Необходимо уточнение модели на основании информации из других источников.

Трудность оценки степени адекватности в общем случае возникает из-за неоднозначности и нечеткости самих критериев адекватности, а также из-за трудности выбора тех признаков, свойств и характеристик, по которым оценивается адекватность. Понятие адекватности является рациональным понятием, поэтому повышение ее степени также осуществляется на рациональном уровне. Следовательно, адекватность модели должна проверяться, контролироваться, уточняться в процессе исследования на частных примерах, аналогиях, экспериментах и т.д. В результате проверки адекватности выясняют, к чему приводят сделанные допущения: то ли к допустимой потере точности, то ли к потере качества. При проверке адекватности также можно обосновать законность применения принятых рабочих гипотез при решении рассматриваемой задачи или проблемы.

Иногда адекватность модели М обладает побочной адекватностью, т.е. она дает правильное количественное и качественное описание не только тех характеристик, для имитации которых она строилась, но и ряда побочных характеристик, потребность в изучении которых может возникнуть в дальнейшем. Эффект побочной адекватности модели возрастает, если в ней нашли отражение хорошо проверенные физические законы, системные принципы, основные положения геометрии, апробированные приемы и способы и т.д. Может, поэтому структурные модели, как правило, обладают более высокой побочной адекватностью, чем функциональные.

Некоторые исследователи [6] в качестве объекта моделирования рассматривают цель. Тогда адекватность модели, с помощью которой достигается поставленная цель, рассматривается либо как мера близости к цели, либо как мера эффективности достижения цели. Например, в адаптивной системе управления по модели модель отражает ту форму движения системы, которая в сложившейся ситуации является наилучшей в смысле принятого критерия. С изменением ситуации модель должна менять свои параметры, чтобы быть более адекватной вновь сложившейся ситуации.

Таким образом, свойство адекватности является важнейшим требованием к модели, но разработка высокоточных и надежных методов проверки адекватности остается по-прежнему трудноразрешимой задачей.

Простота и сложность. Одновременное требование простоты и адекватности модели являются противоречивыми. С точки зрения адекватности сложные модели являются предпочтительнее простых. В сложных моделях можно учесть большее число факторов, влияющих на изучаемые характеристики объектов. Хотя сложные модели и более точно отражают моделируемые свойства оригинала, но они более громоздки, труднообозримы и неудобны в обращении. Поэтому исследователь стремится к упрощению модели, так как с простыми моделями легче оперировать. Например, теория аппроксимации – это теория корректного построения упрощенных математических моделей. При стремлении к построению простой модели должен соблюдаться основной принцип упрощения модели:

упрощать модель можно до тех пор, пока сохраняются основные свойства, характеристики и закономерности, присущие оригиналу.

Этот принцип указывает на предел упрощения.

При этом понятие простоты (или сложности) модели является понятием относительным. Модель считается достаточно простой, если современные средства исследования (математические, информационные, физические) дают возможность провести качественный и количественный анализ с требуемой точностью. А поскольку возможности средств исследований непрерывно растут, то те задачи, которые раньше считались сложными, теперь могут быть отнесены к категории простых. В общем случае в понятие простоты модели входит и психологическое восприятие модели исследователем.

«Адекватность-Простота»

 

Можно также выделить степень простоты модели, оценив ее количественно, как и степень адекватности, от 0 до 1. При этом значению 0 будут соответствовать недоступные, очень сложные модели, а значению 1 – очень простые. Разобьем степень простоты на три интервала: очень простые, доступные и недоступные (очень сложные). Степень адекватности также разобьем на три интервала: очень высокая, приемлемая, неудовлетворительная. Построим таблицу 1.1, в которой по горизонтали отложены параметры, характеризующие степень адекватности, а по вертикали – степень простоты. В этой таблице области (13), (31), (23), (32) и (33) должны быть исключены из рассмотрения либо из-за неудовлетворительной адекватности, либо из-за очень высокой степени сложности модели и недоступности ее изучения современными средствами исследования. Область (11) также должна быть исключена, так как она дает тривиальные результаты: здесь любая модель является очень простой и высокоточной. Такая ситуация может возникнуть, например, при изучении простых явлений, подчиняемых известным физическим законам (Архимеда, Ньютона, Ома и т.д.).

Формирование моделей в областях (12), (21), (22) необходимо осуществлять в соответствии с некоторыми критериями. Например, в области (12) необходимо стремиться к тому, чтобы была максимальной степень адекватности, в области (21) – степень простоты была минимальной. И только в области (22) необходимо проводить оптимизацию формирования модели по двум противоречивым критериям: минимуму сложности (максимуму простоты) и максимуму точности (степени адекватности). Эта задача оптимизации в общем случае сводится к выбору оптимальных структуры и параметров модели. Более трудной задачей является оптимизация модели как сложной системы, состоящей из отдельных подсистем, соединенных друг с другом в некоторую иерархическую и многосвязную структуру. При этом каждая подсистема и каждый уровень имеют свои локальные критерии сложности и адекватности, отличные от глобальных критериев системы.

Следует отметить, что с целью меньшей потери адекватности упрощение моделей целесообразнее проводить:

а) на физическом уровне с сохранением основных физических соотношений,

б) на структурном уровне с сохранением основных системных свойств.

Упрощение же моделей на математическом (абстрактном) уровне может привести к существенной потере степени адекватности. Например, усечение характеристического уравнения высокого порядка до 2 – 3-го порядка может привести к совершенно неверным выводам о динамических свойствах системы.

Заметим, что более простые (грубые) модели используются при решении задачи синтеза, а более сложные точные модели – при решении задачи анализа.

Конечность моделей. Известно, что мир бесконечен, как любой объект, не только в пространстве и во времени, но и в своей структуре (строении), свойствах, отношениях с другими объектами [7]. Бесконечность проявляется в иерархическом строении систем различной физической природы. Однако при изучении объекта исследователь ограничивается конечным количеством его свойств, связей, используемых ресурсов и т.д. Он как бы «вырезает» из бесконечного мира некоторый конечный кусок в виде конкретного объекта, системы, процесса и т.д. и пытается познать бесконечный мир через конечную модель этого куска. Правомерен ли такой подход к исследованию бесконечного мира? Практика отвечает положительно на этот вопрос, основываясь на свойствах человеческого разума и законах Природы, хотя сам разум конечен, но зато бесконечны генерируемые им способы познания мира. Процесс познания идет через непрерывное расширение наших знаний. Это можно наблюдать на эволюции разума, на эволюции науки и техники, и в частности, на развитии как понятия модели системы, так и видов самих моделей.

Таким образом, конечность моделей систем заключается, во-первых, в том, что они отображают оригинал в конечном числе отношений, т.е. с конечным числом связей с другими объектами, с конечной структурой и конечным количеством свойств на данном уровне изучения, исследования, описания, располагаемых ресурсов. Во-вторых, в том, что ресурсы (информационные, финансовые, энергетические, временные, технические и т.д.) моделирования и наши знания как интеллектуальные ресурсы конечны, а потому объективно ограничивают возможности моделирования и сам процесс познания мира через модели на данном этапе развития человечества. Поэтому исследователь (за редким исключением) имеет дело с конечномерными моделями. Однако выбор размерности модели (ее степени свободы, переменных состояния) тесно связан с классом решаемых задач. Увеличение размерности модели связано с проблемами сложности и адекватности. При этом необходимо знать, какова функциональная зависимость между степенью сложности и размерностью модели. Если эта зависимость степенная, то проблема может быть решена за счет применения высокопроизводительных вычислительных систем. Если же эта зависимость экспоненциальная, то «проклятие размерности» неизбежно и избавиться от него практически не удается. В частности, это относится к созданию универсального метода поиска экстремума функций многих переменных.

 

 

Как отмечалось выше, увеличение размерности модели приводит к повышению степени адекватности и одновременно к усложнению модели. При этом степень сложности ограничена возможностью оперирования с моделью, т.е. теми средствами моделирования, которыми располагает исследователь. Необходимость перехода от грубой простой модели к более точной реализуется за счет увеличения размерности модели путем привлечения новых переменных, качественно отличающихся от основных и которыми пренебрегли при построении грубой модели. Эти переменные могут быть отнесены к одному из следующих трех классов:

1) быстропротекающие переменные, протяженность которых во времени или в пространстве столь мала, что при грубом рассмотрении они принимались во внимание своими интегральными или осредненными характеристиками;

2) медленнопротекающие переменные, протяженность изменения которых столь велика, что в грубых моделях они считались постоянными;

3) малые переменные (малые параметры), значения и влияние которых на основные характеристики системы столь малы, что в грубых моделях они игнорировались.

Отметим, что разделение сложного движения системы по скорости на быстропротекающее и медленнопротекающее движение дает возможность изучать их в грубом приближении независимо друг от друга, что упрощает решение исходной задачи. Что касается малых переменных, то ими пренебрегают обычно при решении задачи синтеза, но стараются учесть их влияние на свойства системы при решении задачи анализа.

При моделировании стремятся по возможности выделить небольшое число основных факторов, влияние которых одного порядка и не слишком сложно описывается математически, а влияние других факторов оказывается возможным учесть с помощью осредненных, интегральных или "замороженных" характеристик. При этом одни и те же факторы могут оказывать существенно различное влияние на различные характеристики и свойства системы. Обычно учет влияния вышеперечисленных трех классов переменных на свойства системы оказывается вполне достаточным.

Приближенность моделей. Из вышеизложенного следует, что конечность и простота (упрощенность) модели характеризуют качественное различие (на структурном уровне) между оригиналом и моделью. Тогда приближенность модели будет характеризовать количественную сторону этого различия. Можно ввести количественную меру приближенности путем сравнения, например, грубой модели с более точной эталонной (полной, идеальной) моделью или с реальной моделью. Приближенность модели к оригиналу неизбежна, существует объективно, так как модель как другой объект отражает лишь отдельные свойства оригинала. Поэтому степень приближенности (близости, точности) модели к оригиналу определяется постановкой задачи, целью моделирования. Погоня за повышением точности модели приводит к ее чрезмерному усложнению, а следовательно, к снижению ее практической ценности, т.е. возможности ее практического использования. Поэтому при моделировании сложных (человеко-машинных, организационных) систем точность и практический смысл несовместимы и исключают друг друга (принцип Л.А. Заде). Причина противоречивости и несовместимости требований точности и практичности модели кроется в неопределенности и нечеткости знаний о самом оригинале: его поведении, его свойствах и характеристиках, о поведении окружающей среды, о мышлении и поведении человека, о механизмах формирования цели, путей и средствах ее достижения и т.д.

Истинность моделей. В каждой модели есть доля истины, т.е. любая модель в чем-то правильно отражает оригинал. Степень истинности модели выявляется только при практическом сравнении её с оригиналом, ибо только практика является критерием истинности.

С одной стороны, в любой модели содержится безусловно истинное, т.е. определенно известное и правильное. С другой стороны, в модели содержится и условно истинное, т.е. верное лишь при определенных условиях. Типовая ошибка при моделировании заключается в том, что исследователи применяют те или иные модели без проверки условий их истинности, границ их применимости. Такой подход приводит заведомо к получению неверных результатов.

Отметим, что в любой модели также содержится предположительно-истинное (правдоподобное), т.е. нечто, могущее быть в условиях неопределенности либо верным, либо ложным. Только на практике устанавливается фактическое соотношение между истинным и ложным в конкретных условиях. Например, в гипотезах как абстрактных познавательных моделях трудно выявить соотношение между истинным и ложным. Только практическая проверка гипотез позволяет выявить это соотношение.

При анализе уровня истинности модели необходимо выяснить знания, содержащиеся в них: 1) точные, достоверные знания; 2) знания, достоверные при определенных условиях; 3) знания, оцениваемые с некоторой степенью неопределенности (с известной вероятностью для стохастических моделей или с известной функцией принадлежности для нечетких моделей); 4) знания, не поддающиеся оценке даже с некоторой степенью неопределенности; 5) незнания, т.е. то, что неизвестно.

Таким образом, оценка истинности модели как формы знаний сводится к выявлению содержания в нем как объективных достоверных знаний, правильно отображающих оригинал, так и знаний, приближенно оценивающих оригинал, а также то, что составляет незнание.

Контроль моделей. При построении математических моделей объектов, систем, процессов целесообразно придерживаться следующих рекомендаций:

1) Моделирование надо начинать с построения самых грубых моделей на основе выделения самых существенных факторов. При этом необходимо четко представлять как цель моделирования, так и цель познания с помощью данных моделей.

2) Желательно не привлекать к работе искусственные и труднопроверяемые гипотезы.

3) Необходимо контролировать размерность переменных, придерживаясь правила: складываться и приравниваться могут только величины одинаковой размерности. Этим правилом необходимо пользоваться на всех этапах вывода тех или иных соотношений.

4) Необходимо контролировать порядок складываемых друг с другом величин с тем, чтобы выделить основные слагаемые (переменные, факторы) и отбросить малозначительные. При этом должно сохраняться свойство «грубости» модели: отбрасывание малых величин приводит к малому изменению количественных выводов и к сохранению качественных результатов. Сказанное относится и к контролю порядка поправочных членов при аппроксимации нелинейных характеристик.

5) Необходимо контролировать характер функциональных зависимостей, придерживаясь правила: проверять сохранность зависимости изменения направления и скорости одних переменных от изменения других. Это правило позволяет глубже понять физический смысл и правильность выведенных соотношений.

6) Необходимо контролировать поведение переменных или некоторых соотношений при приближении параметров модели или их комбинаций к крайне допустимым (особым) точкам. Обычно в экстремальной точке модель упрощается или вырождается, а соотношения приобретают более наглядный смысл и могут быть проще проверены, а окончательные выводы могут быть продублированы каким-либо другим методом. Исследования экстремальных случаев могут служить для асимптотических представлений поведения системы (решений) в условиях, близких к экстремальным.

7) Необходимо контролировать поведение модели в известных условиях: удовлетворение функции как модели поставленным граничным условиям; поведение системы как модели при действии на нее типовых входных сигналов.

8) Необходимо контролировать получение побочных эффектов и результатов, анализ которых может дать новые направления в исследованиях или потребовать перестройки самой модели.

Таким образом, постоянный контроль за правильностью функционирования моделей в процессе исследования позволяет избежать грубых ошибок в конечном результате. При этом выявленные недостатки модели исправляются в ходе моделирования, а не вычисляются заранее.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: