Классификация механизмов, узлов и деталей машин




Механизм - искусственно созданная система тел, предназначенная для преобразования движения одного из них или нескольких в требуемые движения других тел. Машина - механизм или сочетание механизмов, которые служат для

ния других тел.

В зависимости от назначения различают:

- энергетические машины- двигатели, компрессоры;

- рабочие машины – технологические, транспортные, информационные.

Все машины состоят из деталей, которые объединены в узлы. Деталь - это часть машины, изготовленная без применения сборочных операций.

Узел - крупная сборочная единица, имеющая вполне определенное функциональное назначение.

Различают детали и узлы общего и специального назначения.

Детали и узлы общего назначения делят на три основные группы:

- соединительные детали;

- передачи вращательного и поступательного движения;

- детали, обслуживающие передачи.

Создание машин и их звеньев из различных деталей вызывает необхо димость соединения последних между собой. Этой цели служит целая группа

соединительных деталей (соединения), которые, в свою очередь, делятся на:

- неразъемные - заклепочные, сварные, клеевые; с натягом;

- разъемные – резьбовые; шпоночные; шлицевые.

Любая машина состоит из двигательного, передаточного и исполни тельного механизмов. Наиболее общими для всех машин являются передаточ-

ные механизмы. Передачу энергии удобнее всего производить при вращательном движении. Для передачи энергии во вращательном движении служат

передачи, валы и муфты.

Передачи вращательного движения являются механизмами, предназна ченными передавать энергию с одного вала на другой, как правило, с преоб-

разованием (уменьшением или увеличением) угловых скоростей и соответствующим изменением крутящих моментов.

Передачи подразделяют на передачи зацеплением (зубчатые, червячные, цепные) и трением (ременные, фрикционные).

Вращательные детали передачи - зубчатые колеса, шкивы, звездочки устанавливают на валах и осях. Валы служат для передачи крутящего момен-

та вдоль своей оси и для поддержания указанных выше деталей. Для поддержания вращающихся деталей без передачи крутящего момента служат оси.

Валы соединяют с помощью муфт. Различают муфты постоянные и сцепны

Валы и оси вращаются в подшипниках. В зависимости от вида трения их подразделяют на подшипники качения и скольжения.

В большинстве машин необходимо использовать упругие элементы - пружины и рессоры, назначение которых аккумулировать энергию или

предотвращать вибрации.

Для повышения равномерности хода, уравновешивания деталей машин и накопления энергии в целях повышения силы удара применяют маховики,

маятники, бабы, копры.

Долговечность машин в значительной степени определяется устройствами для защиты от загрязнений и для смазки.

Важную группу составляют детали и механизмы управления. Кроме того, весьма значительные группы составляют специфические

детали:

- для энергетических машин - цилиндры, поршни, клапаны, лопатки и диски турбин, роторы, статоры и другие;

- для транспортных машин - колеса, гусеницы, рельсы, крюки, ковши и другие.

2. Основы проектирования механизмов. Проектированием называется процесс разработки технической документации, содержащей технико-экономические обоснования, расчеты, чертежи, макеты, сметы, пояснительные записки и другие материалы, необходимые для производства машины. По типу изображения объекта различают чертежное и объемное проектирование; последнее включает выполнение макета или модели объекта. Для деталей машин характерен чертежный метод проектирования. Совокупность конструкторских документов, полученных в результате проектирования, называется проектом.

Чтобы избавить конструктора от выполнения трудоемких расчетов, многофакторного анализа и большого объема графических работ используют ЭВМ. При этом конструктор ставит задачу для ЭВМ и принимает окончательное решение, а машина обрабатывает весь объем информации и делает первичный отбор. Для такого общения человека с машиной создаются системы автоматизированного проектирования (САПР), которые способствуют повышению технико-экономического уровня проектируемых объектов, сокращению сроков, уменьшению стоимости и трудоемкости проектирования.Стадии разработки конструкторской документации и этапы работ установлены стандартом, который обобщает опыт, накопленный в передовых странах по проектированию механизмов и машин.

Первая стадия – разработка технического задания - документа содержащего наименование, основное назначение и технические характеристики, показатели качества и технико-экономические требования, предъявляемые заказчиком к разрабатываемому изделию.

Вторая стадия – разработка технического предложения — совокупность конструкторских документов, содержащих технические и технико-экономические обоснования целесообразности разработки документации изделия на основании анализа технического задания, сравнительной оценки возможных решений с учетом достижений науки и техники в стране и за рубежом, а также патентных материалов. Техническое предложение утверждается заказчиком и генеральным подрядчиком.Третья стадия – разработка эскизного проекта — совокупность конструктор-ских документов, содержащих принципиальные конструктивные решения и разработки общих видов чертежей, дающих общие представления об устройстве и принципе работы разрабатываемых изделии, его основных параметрах и габаритных размерах.Четвертая стадия - разработка технического проекта — совокупность конст-рукторских документов, содержащих окончательные технические решения, дающих полное представление об устройстве изделия. Чертежи проекта состоят из общих видов и сборочных чертежей узлов, полученных с учетом достижений науки и техники. На этой стадии рассматриваются вопросы надежности узлов, соответствие требованиям техники безопасности, условиям транспортирования и др.Пятая стадия - разработка рабочей документации - совокупности документов, содержащих чертежи общих видов, узлов и деталей, оформленных так, что по ним можно изготавливать изделия и контролировать их производство и эксплуатацию (спе-цификации, технические условия на изготовление, сборку, испытание изделия и др.). На этой стадии разрабатываются конструкции деталей, оптимальные по показателям надежности, технологичности и экономичности.В соответствии с разработанной в процессе проектирования рабочей документа-ции в дальнейшем создается технологическая документация, которая определяет тех-нологию изготовления изделия.Рабочие, технологические, а также нормативно-технические документы (послед-ние включают стандарты всех категорий, руководящие технические материалы, общие технические требования и т. п.) в совокупности составляют техническую документацию, необходимую для организации и осуществления производства, испытаний, эксплуатации и ремонта предмета производства (изделия).Условия работы деталей машин бывают весьма разнообразными и трудно под-дающимися точному учету, поэтому расчеты деталей машин часто выполняют по при-ближенным, а иногда, эмпирическим формулам, полученными в результате обобщения накопленного опыта проектирования, испытаний и эксплуатации деталей и узлов машин. В процессе проектирования деталей машин встречаются два вида расчетов, а именно: проектный расчет, при котором обычно определяются основные размеры деталей или узла, проверочный расчет, когда для созданной конструкции определяется, например, значение напряжений в опасных сечениях, тепловой режим работы, долговечность и другие необходимые параметры.

 

3. Основные требования, предъявляемые к деталям машин на стадии проектирования.
Детали машин должны отвечать следующим требованиям, определяющим совершенство конструкции детали:
-работоспособность
-надёжность
-экономичность
I. Работоспособность - это способность детали выполнять заданныефункции.
Обычно выделяют пять основных критериев работоспособности.
-Прочность – это способность детали воспринимать нагрузки не разрушаясь.

-Жесткость – это способность детали сопротивляться изменению формы под действием нагрузки (не подвергаясь остаточной деформации). -Износостойкость – способность детали противостоять изменению геометрических размеров вследствие износа (истирания). -Теплостойкость – это способность детали сохранять работоспособность в заданных температурных режимах без снижения эксплуатационных характеристик. -Вибростойкость – способность детали выполнять заданные функции без недопустимых резонансных колебаний.

Если деталь удовлетворяет всем перечисленным критериям работоспособности, то далее необходимо проверить выполнение следующего требования, предъявляемого к ее конструкции - надежность.
II. Надежность - это способность конструкции выполнять заданные функции в течение заданного времени или заданной наработки, сохраняя эксплуатационные показатели в нормативных пределах.
Надежность является сложным свойством, которое состоит из сочетания: безотказности, долговечности, ремонтопригодности и сохраняемости.
Для повышения надежности системы используют несколько приемов.
а)-применение более коротких кинематических цепей (меньшего числа изделий); б)-применение дублирующих (параллельных) систем, т.е. в цепь добавляется параллельная система, которая включится при отказе штатной системы. III. Экономичность - комплекс мероприятий, направленных на создание работоспособных надежных конструкций при минимальных затратах.

4. Основные критерии работоспособности

Цель расчета деталей машин – определение материала и геометрических размеров деталей. Расчет производится по одному или нескольким критериям.
Прочность – главный критерий – способность детали сопротивляться разрушению под действием внешних нагрузок. Следует различать прочность материала и прочность детали. Для повышения прочности надо использовать правильный выбор материала и рациональный выбор формы детали. Увеличение размеров – очевидный, но нежелательный путь.
Жесткость – способность детали сопротивляться изменению формы под действием нагрузок.
Износостойкость – способность детали сопротивляться истиранию по поверхности силового контакта с другими деталями. Повышенный износ приводит к изменению формы детали, физико-механических свойств поверхностного слоя.
Меры по предупреждению износа:
а) правильный подбор пар трения;
б) снижение температуры узла трения;
в) обеспечение хорошей смазки;
г) предотвращение попадания частиц износа в зону контакта.
Теплостойкость – способность детали сохранять свои расчетные параметры (геометрические размеры и прочностные характеристики) в условиях повышенных температур. Заметное снижение прочности наступает для черных металлов при t = 350-4000, для цветных – 100-1500. При длительном воздействии нагрузки в условиях повышенных температур наблюдается явление ползучести- непрерывная пластическая деформация при постоянной нагрузке.
Для увеличения теплостойкости используют:
а) материалы с малым коэффициентом линейного расширения;
б) специальные жаропрочные стали.
Виброустойчивость – способность детали работать в заданном режиме движения без недопустимых колебаний.
Надежность – способность детали безусловно работать в течение заданного срока службы.
Кн= 1-Q (1.1.1),
где Кн – коэффициент надежности – вероятность безотказной работы машины,
Q – вероятность отказа детали.
Если машина состоит из n деталей, то Кн = 1- nQ, то есть меньше единицы, чем меньше деталей в машине, тем она более надежная.

 

5. Механической передачей называют устройство для передачи механического движения от двигателя к исполнительным органам машины. Может осуществляться с изменением значения и направления скорости движения, с преобразованием вида движения. Необходимость применения таких устройств обусловлена нецелесообразностью, а иногда и невозможностью непосредственного соединения рабочего органа машины с валом двигателя. Механизмы вращательного движения позволяют осуществить непрерывное и равномерное движение с наименьшими потерями энергии на преодоление трения и наименьшими инерционными нагрузками.

Механические передачи вращательного движения делятся:

- по способу передачи движения от ведущего звена к ведомому на передачи трением (фрикционные, ременные) и зацеплением (цепные, зубчатые, червячные);

- по соотношению скоростей ведущего и ведомого звеньев на замедляющие (редукторы) и ускоряющие (мультипликаторы);

- по взаимному расположению осей ведущего и ведомого валов на передачи с параллельными, пресекающимися и перекрещивающимися осями валов.

 

Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.

Зубчатая передача состоит из двух колес, посредством которых они сцепляются между собой. Зубчатое колесо с меньшим числом зубьев называют шестерней, с большим числом зубьев – колесом.

Планетарными называются передачи, содержащие зубчатые колеса с перемещающимися осями (рис. 2.6). Передача состоит из центрального колеса 1 с наружными зубьями, центрального колеса 3 с внутренними зубьями, водила Н и сателлитов 2. Сателлиты вращаются вокруг своих осей и вместе с осью вокруг центрального колеса, т.е. совершают движение, подобное движению планет.

При неподвижном колесе 3 движение может передаваться от 1 к Н или от Н к 1; при неподвижном водиле Н – от 1 к 3 или от 3 к 1. При всех свободных звеньях одно движение можно раскладывать на два (от 3 к 1 и Н) или два соединять в одно (от 1 и Н к 3). В этом случае передачу называют дифференциальной.

Червячная передача применяется для передачи вращения от одного вала к другому, когда оси валов перекрещиваются. Угол перекрещивания в большинстве случаев равен 90º. Наиболее распространенная червячная передача (рис. 2.10) состоит из так называемого архимедова червяка, т.е. винта, имеющего трапецеидальную резьбу с углом профиля в осевом сечении, равным двойному углу зацепления (2 α = 40°), и червячного колеса.

Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма. Впервые такая передача была запатентована в США инженером Массером. [3]

Волновые зубчатые передачи (рис. 2.14) являются разновидностью планетарных передач, у которых одно из колес гибкое.

Волновая передача включает в себя жесткое зубчатое колесо b с внутренними зубьями и вращающееся гибкое колесо g c наружными зубьями. Гибкое колесо входит в зацепление с жестким в двух зонах с помощью генератора волн (например, водила h с двумя роликами), который соединяют с корпусом передачи b.

Передачи, работа которых основана на использовании сил трения, возникающих между рабочими поверхностями двух прижатых друг к другу тел вращения, называют фрикционными передачами.

Для нормальной работы передачи необходимо, чтобы сила трения F т р была больше окружной силы Ft, определяющей заданный вращающий момент:

Ft < F т р . (2.42)

Сила трения

F т р = Fn f,

где Fn – сила прижатия катков;

f – коэффициент трения.

Нарушение условия (2.42) приводит к буксованию и быстрому износу катков.

В зависимости от назначения фрикционные передачи можно разделить на две основные группы: передачи с нерегулируемым передаточным отношением (рис. 2.15, а); регулируемые передачи, называемые вариаторами, позволяющими плавно (бесступенчато) изменять передаточное отношение.

Ременная передача состоит из двух шкивов, закрепленных на валах, и охватывающего их ремня. Ремень надет на шкивы с определенным натяжением, обеспечивающим трение между ремнем и шкивами, достаточное для передачи мощности от ведущего шкива к ведомому.

В зависимости от формы поперечного сечения ремня различают: плоскоременную, клиноременную и круглоременную (рис. 2.16, а – в) передачи.

Цепная передача состоит из двух колес с зубьями (звездочек) и охватывающей их цепи. Наиболее распространены передачи с втулочно-роликовой цепью (рис. 2.19, а) и зубчатой цепью (рис. 2.19, б). Цепные передачи применяются для передачи средних мощностей (не более 150 кВт) между параллельными валами в случаях, когда межосевые расстояния велики для зубчатых передач.

Передача винт-гайка служит для преобразования вращательного движения в поступательное. Широкое применение таких передач определяется тем, что при простой и компактной конструкции удается осуществить медленные и точные перемещения.

В авиастроении передача винт-гайка используется в механизмах управления самолетом: для перемещения взлетно-посадочных закрылков, для управления триммерами, поворотными стабилизаторами и др.

К преимуществам передачи относятся простота и компактность конструкции, большой выигрыш в силе, точность перемещений.

Недостатком передачи является большая потеря на трение и связанный с этим малый КПД.

Механизмы, в которые входят жесткие звенья, соединенные между собой кинематическими парами пятого класса, называют рычажными механизмами.

В кинематических парах таких механизмов давление и интенсивность изнашивания звеньев меньше, чем в высших кинематических парах.

Среди разнообразных рычажных механизмов наиболее распространенными являются плоские четырехзвенные механизмы. Они могут иметь четыре шарнира (шарнирные четырехзвенники), три шарнира и одну поступательную пару или два шарнира и две поступательные пары. Их используют для воспроизведения заданной траектории выходных звеньев механизмов, преобразования движения, передачи движения с переменным передаточным отношением.

Под передаточным отношением рычажного механизма понимают отношение угловых скоростей основных звеньев, если они совершают вращательные движения, или отношение линейных скоростей центра пальца кривошипа и выходного звена, если оно совершает поступательное движение.

 

 

6. Валом называют деталь (как правило, гладкой или ступенчатой ци­линдрической формы), предназначенную для поддержания установленных на ней шкивов, зубчатых колес, звездочек, катков и т. д., и для передачи вра­щающего момента.

При работе вал испытывает изгиб и кручение, а в отдельных случаях помимо изгиба и кручения валы могут испытывать деформацию растяже­ния (сжатия).

Некоторые валы не поддерживают вращающиеся детали и работают только на кручение.

Вал 1 (рис.1) имеет опоры 2, называемые подшипниками. Часть вала, охватываемую опорой, называют цапфой. Концевые цапфы именуют ши­пами 3, а промежуточные — шейками 4.

Осью называют деталь, предназначенную только для поддержания ус­тановленных на ней деталей.

В отличие от вала ось не передает вращающего момента и работает только на изгиб. В машинах оси могут быть неподвижными или же могут вращаться вместе с сидящими на них деталями (подвижные оси).

Не следует путать понятия "ось колеса", это деталь и "ось вращения", это геометрическая линия центров вращения.

Формы валов и осей весьма многообразны от простейших цилиндров до сложных коленчатых конструкций. Известны конструкции гибких валов, которые предложил шведский инженер Карл де Лаваль ещё в 1889 г.

Форма вала определяется распределением изгибающих и крутящих моментов по его длине. Правильно спроектированный вал представляет собой балку равного сопротивления. Валы и оси вращаются, а следовательно, испытывают знакопеременные нагрузки, напряжения и деформации (рис.3). Поэтому поломки валов и осей имеют усталостный характер.

Расчет осей и валов на жесткость

Валы и оси, рассчитанные на статическую или усталостную проч­ность, не всегда обеспечивают нормальную работу машин. Под действием на­грузок F (рис. 12) валы и оси в процессе работы деформируются и полу­чают линейные прогибы f и угловые перемещения, что, в свою очередь, ухудшает работоспособность отдельных узлов машин. Так, например, зна­чительный прогиб f вала электродвигателя увеличивает зазор между рото­ром и статором, что отрицательно сказывается на его работе. Угловые пе­ремещения вала или оси ухудшают работу подшипников, точность зацеп­ления передач. От прогиба вала в зубчатом зацеплении возникает концентрация нагрузки по длине зуба. При больших углах поворота в подшипнике может произойти защемление вала. В металлорежущих станках перемещения валов (в особенности шпинделей) снижают точность обработки и качество поверхности деталей. В делительных и отсчетных механизмах упругие перемещения снижают точность измерений и т. д.

Для обеспечения требуемой жесткости вала или оси необходимо произвести расчет на изгибную или крутильную жесткость.

Расчет валов и осей на изгибную жесткость.

Параметрами, харак­теризующими изгибную жесткость валов и осей, являются прогиб вала f и угол наклона , а также угол закручивания

Условие для обеспечения в процессе эксплуатации требуемой жестко­сти на изгиб:

и (23)

где f — действительный прогиб вала (оси), определяемый по формуле (сначала определяется максималь­ный прогиб в плоскости (Y)- fy, затем в плоскости (Z) - fz, после чего эти прогибы векторно суммируются); [f] — допускаемый прогиб (табл. 3); и — действительный и допускаемый углы наклона (табл. 3).

Расчет валов и осей на крутильную жесткость.

Максимальный угол закручивания определяется также по формулам курса "Сопротивление материалов".

Допускаемый угол закрутки в градусах на метр длины можно принимать равным:

Допускаемые упругие перемещения зависят от конкретных требований к конструкции и определяются в каждом отдельном случае. Так, например, для валов зубчатых цилиндрических передач допустимая стрела прогиба под колесом , где т – модуль зацепления.

Малое значение допускаемых перемещений иногда приводит к тому, что размеры вала определяет не прочность, а жесткость. Тогда нецелесообразно изготовлять вал из дорогих высокопрочных сталей.

Перемещения при изгибе целесообразно определять, используя интеграл Мора или способ Верещагина (см. курс «Сопротивление материалов»).

 

 

7. Подшипники Подшипники применяемые в опорах машин и механизмов, делятся на два типа: скольжения и качения. В опорах с подшипниками скольжения взаимно подвижные рабочие поверхности вала и подшипника разделены только смазочным веществом, и вращение вала или корпуса подшипникапроисходит в условиях чистого скольжения. В опорах с подшипниками качения между взаимно подвижными кольцами подшипника находятся шарики или ролики, и вращение вала или корпуса происходит в основном в условиях качения. Подшипники качения, как и подшипники скольжения, в определенных условиях могут в различной степени удовлетворять требованиям, связанным с назначением механизма, условиям его монтажа и эксплуатации.Подшипники качения при одинаковой грузоподъемности имеют по сравнению с подшипниками скольжения преимущество вследствие меньшего трения в момент пуска и при умеренных частотах вращения, меньших осевых габаритов (примерно в 2-3 раза), относительно простоты обслуживания и подачи смазки, низкой стоимости (особенно при массововм производствеподшипников качения малых и средних габаритов), малые амплитуды колебания сопротивления вращению в процессе работы механизма. Кроме того, при использованиии подшипников качения в значительно большей степени удовлетворяется требование взаимозаменяемости и унификации элементов узла: при выходе его из строя замена подшипника не представляет сложности, поскольку габариты и допуски на размеры посадочных мест строго стандартизированы, в то время как при износе подшипниковскольжения приходится восстанавливать рабочую поверхность шейки вала, менять или вновь заливать антифрикационным сплавом вкладыш подшипника, подгонять его под требуемые размеры, выдерживая в заданных пределах рабочий зазор между поверхностями вала и подшипника. Недостатки подшипников качения заключаются в относительно больших радиальных габаритах и большем сопротивлении вращения по сравнению с подшипниками скольжения, работающими в условиях жидкостной смазки, когда поверхности шейки вала и вкладыша полностью разделены тонкими слоем смазывающей жидкости. На скоростные характеристики подшипников качения влияет трение скольжения, существующее между сепаратором, отделяющим тела качения один от другого, и рабочими элементамиподшипника. Поэтому при создании высокоскоростных машин иногда приходится прибегать к установке подшипников скольжения, работающих в условиях жидкостной смазки, несмотря на занчительные трудности в их эксплуатации. Кроме того, в ряде случае подшипники качения обладают меньшей жесткостью, так как могут вызвать вибрацию вала вследствие ритмичного прокатывания тел качения через нагруженную зону опоры. К недостатку опор на подшипниках качения можно отнести и более сложный монтаж их по сравнению с опорами на подшипниках скольжения разъемного типа. Конструкция подшипника качения: 1-наружное кольцо, 2-внутреннее кольцо, 3-шарик, 4-сепаратор.
 

Подшипник скольжения-это разновидность подшипников в котором трение происходит при скольжении сопряжённых поверхностей.
В зависимости от смазки подшипники скольжения бывают гидродинамические, газодинамические и т.д.
Область применения подшипников скольжения-двигатели внутреннего сгорания, генераторы и т.д.

Фиксированный подшипник

Такой подшипник воспринимает радиальную и осевую нагрузку одновременно в двух направлениях. Он имеет осевую опору на валу и в корпусе. Для этого применяют радиальные шарикоподшипники, сферические роликоподшипники и двурядные или спаренные радиально-упорные шарикоподшипники и конические роликоподшипники.

Цилиндрические роликоподшипники с одним безбортовым кольцом можно использовать в фиксированной опоре в паре с другим, упорным подшипником, воспринимающим осевые нагрузки. Упорный подшипник устанавливается в корпусе с радиальным зазором.

Плавающий подшипник

Плавающий подшипник воспринимает только радиальную нагрузку и допускает возможность относительного осевого перемещения вала и корпуса. осевое перемещение осуществляется либо в самом подшипнике (цилиндрические роликоподшипники), либо в посадке с зазором кольца подшипника и сопряженной детали.

 

8. Уплотнительное устройство — устройство или способ предотвращения или уменьшения утечки жидкости, газа путём создания преграды в местах соединения между деталями машин (механизма) состоящее из одной детали и более. Существуют две большие группы: неподвижные уплотнительные устройства (торцевые, радиальные, конусные) и подвижные уплотнительные устройства (торцевые, радиальные, конусные, комбинированные).

§ Неподвижные уплотнительные устройства:

§ герметик (вещество с высокой адгезией к соединяемым деталям и нерастворимое в запорной среде);

§ прокладки из различных материалов и различной конфигурации;

§ кольца круглого сечения из эластичного материала[1];

§ уплотнительные шайбы;

§ пробки;

§ применение конусной резьбы;

§ контактное уплотнение.

§ Подвижные уплотнительные устройства (позволяют совершать различные движения, такие как: осевое перемещение, вращение (в одном или двух направлениях) или сложное движение):

§ канавочные уплотнения;

§ лабиринты;

§ кольца круглого сечения из эластичного материала;

§ войлочные кольца;

§ маслоотражательные устройства;

§ манжеты различной конфигурации;

§ лепестковое уплотнение;

§ шевронные многорядные уплотнения;

§ сальниковые устройства;

§ сильфонные уплотнения;

§ торцевые механические уплотнения;

§ торцевые газовые уплотнения.

 

 

9. Разъемными называют соединения, разборка которых проис­ходит без нарушения целостности составных частей изделия. Разъемные соединения могут быть как подвижными, так и неподвижными. Наиболее распространенными в машиностроении видами разъемных соединений являются: резьбовые, шпоночные, шлицевые, клиновые, штифтовые и профильные. Резьбовым называют соединение составных частей изделия с применением детали, имеющей резьбу. Резьба представляет собой чередующиеся выступы и впадины на поверхности тела вращения, расположенные по винтовой линии. Основ­ные определения, относящиеся к резьбам общего назначения, стандар­тизованы. Резьбовые соединения являются самым распространенным видом соединений вообще и разъемных в частности. В современных машинах детали, имеющие резьбу, составляют свыше 60 % от общего количества деталей. Широкое применение резьбовых соединений в машинострое­нии объясняется их достоинствами: универсальностью, высокой надежностью, малыми габаритами и весом крепежных резьбовых дета­лей, способностью создавать и воспринимать большие осевые силы, тех­нологичностью и возможностью точного изготовления.

Шпилечное соединение состоит из шпильки, шайбы, гайки и соединяемых деталей. Соединение деталей шпилькой применяется тогда, когда нет места для головки болта или когда одна из соединяемых деталей имеет значительную толщину. В этом случае экономически нецелесообразно сверлить глубокое отверстие и ставить болт большой длины. Соединение шпилькой уменьшает массу конструкций. Одна из соединяемых шпилькой деталей имеет углубление с резьбой — гнездо под шпильку, которая ввинчивается в него концом l1 (см. рис. 2.2.24). Остальные соединяемые детали имеют сквозные отверстия диаметром d0 = (1,05...1,10)d, где d—диаметр резьбы шпильки. Гнездо сначала высверливается на глубину l2, которая на 0,5d больше ввинчиваемого конца шпильки, а затем в гнезде нарезается резьба. На входе в гнездо выполняется фаска с = 0,15d (рис. 2.2.29, а). При ввинченной в гнездо шпильке соединение деталей дальше осуществляется как в случае болтового соединения. Винтовые (ходовые) соединения относятся к подвижным разъемным соединениям. В этих соединениях одна деталь перемещается относительно другой детали по резьбе. Обычно в этих соединениях применяются резьбы трапецеидальная, упорная, прямоугольная и квадратная. Чертежи винтовых соединений выполняются по общим правилам. Зубчатое (шлицевое) соединение представляет собой многошпоночное соединение, в котором шпонка выполнена заодно с валом и расположена параллельно его оси. Зубчатые соединения, как и шпоночные, используются для передачи крутящего момента, а также в конструкциях, требующих перемещения деталей вдоль оси вала, например в коробках скоростей. Соединение шпоночное состоит из вала, колеса и шпонки. Шпонка (рис. 2.2.36) представляет собой деталь призматической (шпонки призматические или клиновые) или сегментной (шпонки сегментные) формы, размеры которой определены стандартом. Шпонки прим Соединение штифтами (рис. 2.2.38) — цилиндрическими или коническими — используется для точной взаимной фиксации скрепляемых деталей. Цилиндрические штифты обеспечивают неоднократную сборку и разборку деталей. Шплинты применяют для ограничения осевого перемещения деталей (рис. 2.2.39) стопорения корончатых гаек. Клиновые соединения (рис. 2.2.40) обеспечивают легкую разборку соединяемых деталей. Грани клиньев имеют уклон от 1/5 до1/40.

 

10. Неразъемные соединения получили широкое распространение в машиностроении. К ним относятся соединения сварные, заклепочные, паяные, клеевые. Сюда относятся также соединения, полученные оп-рессовкой, заливкой, развальцовкой (или завальцовкой), кернением, сшиванием, посадкой с натягом и др.

Сварные соединения получают с помощью сварки. Сваркой называют процесс получения неразъемного соединения твердых предметов, состоящих из металлов, пластмасс или других материалов, путем местного их нагревания до расплавленного или пластического состояния без применения или с применением механических усилий.

Сварным соединением называется совокупность изделий, соединенных с помощью сварки.

Сварным швом называется затвердевший после расплавления материал. Металлический сварной шов отличается по своей структуре от структуры металла свариваемых металлических деталей.

По способу взаимного расположения свариваемых деталей различают соединения стыковые (рис. 242, а), угловые (рис. 242, б), тавровые (рис. 242, в) и внахлестку (рис. 242, г). Вид соединения определяет вид сварного шва. Сварные швы подразделяются на: стыковые, угловые (для угловых, тавровых соединений и соединений внахлестку), точечные (для соединений внахлестку, сваркой точками).

По своей протяженности сварные швы могут быть: непрерывными по замкнутому контуру (рис. 243, а) и по незамкнутому контуру (рис. 243, б) и прерывистыми (рис. 243, в). Прерывистые швы имеют равные по длине проваренные участки с равными промежутками между ними. При двусторонней сварке, если заваренные участки расположены друг против друга, такой шов называется цепным (рис. 244, а), если же участки чередуются, то шов называется шахматным (рис. 244, б).

Клепаные соединения применяются в конструкциях, подверженных действию высокой температуры, коррозии, вибрации, а также в соединениях из плохо сваривающихся металлов или в соединениях металлов с неметаллическими частями. Такие соединения нашли широкое применение в котлах, железнодорожных мостах, некоторых авиационных конструкциях и в отраслях легкой промышленности.

В то же время в ряде отраслей промышленности с усовершенствованием технологии сварного производства объем применения заклепочных соединений постепенно сокращается.

Основным скрепляющим элементом заклепочных соединений является заклепка. Она представляет собой короткий цилиндрический стержень круглого сечения, на одном конце которого находится головка (рис. 249). Головки заклепок могут иметь сферическую, кониче-

скую или коническо-сферическую форму. В зависимости от этого различают головки полукруглые (рис. 249, а), потайные (рис. 249, б), полупотайные (рис. 249, в), плоские (рис. 249, г).

На сборочных чертежах головки заклепок изображают не по их действительным размерам, а по относительным размерам, в зависимости от диаметра стержня заклепки d.

Технология выполнения заклепочного соединения следующая. В соединяемых деталях выполняют отверстия сверлением или другим способом. В сквозное отверстие соединяемых деталей вставляют до упора головной стержень заклепки. Причем заклепка может быть в горячем или холодном виде. Свободный конец заклепки выходит за пределы детали примерно на 1 ,5d. Его закл



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: