Электрический ток в металлах.




Как вы знаете, электрический ток могут проводить и твердые, и жидкие, и газообразные тела. На практике, чаще всего применяются металлические проводники. Можно привести много примеров: линии электропередач, обеспечивающие передачу энергии от различных источников тока к потребителям.

Генераторы, электронагревательные приборы и так далее. Как мы уже говорили ранее, хорошими проводниками являются некоторые растворы. Наиболее распространенный пример — это батарейка, в которой используется электролит. Примеров использования батарей и аккумуляторов тоже достаточно: они используются в автомобилях, ноутбуках, мобильных телефонах, планшетах и так далее.

Напомним, что помимо проводников, существуют такие тела, как полупроводники и диэлектрики. Как вы знаете, диэлектрики используются для изоляции проводки или электроприборов. Полупроводники представляют довольно большой интерес, поскольку их проводимостью достаточно легко управлять, а это открывает большие возможности.

Со всем выше перечисленным мы познакомимся по окончании курса физики десятого класса, и начнем с проводимости металлов.

Мы уже много раз говорили, что электрический ток — это упорядоченное движение заряженных частиц, и всегда утверждали, что в металлах носителями свободных зарядов являются электроны. Дело в том, что за этим утверждением стоят многочисленные опыты разных ученых. Мы рассмотрим несколько таких опытов.

В 1901 году, Эдуард Рикке провел следующий эксперимент: он подключил к электрической цепи металлические цилиндры, плотно прилегающие друг к другу. В центре находился алюминиевый цилиндр, а по краям — медные.

В течение приблизительно одного года через эти цилиндры протекал электрический ток. После окончания эксперимента, все три цилиндра были исследованы на предмет изменения химического состава. Выяснилось, что никаких изменений не произошло, за исключением очень незначительной диффузии. Это послужило доказательством того, что ток в металлах обусловлен именно движением электронов. Если бы в движении участвовали какие-то другие частицы (например, ионы кристаллической решетки), то это, неизбежно привело бы к изменению химического состава.

Другой опыт, был проведен в 1912 году учеными Леонидом Мандельштамом и Николаем Папалекси. К катушке, которая могла вращаться вокруг своей оси, был подключен гальванометр при помощи скользящих контактов.

При резкой остановке катушки, гальванометр регистрировал кратковременные токи. Дело в том, что при резкой остановке заряженные частицы какое-то время могли двигаться по инерции относительно проводника (то есть проволоки катушки). Поскольку сила тока характеризуется зарядом, а инерция — массой частиц, переносимый при торможении заряд пропорционален отношению заряда частиц к их массе. Из этого эксперимента было определено это соотношение, которое совпало с найденным до этого из других опытов отношением модуля заряда электрона к его массе:

Таким образом, эксперимент Мандельштама и Папалекси еще раз подтвердил, что ток в металлах обусловлен движением электронов. Поэтому, проводимость металлов называют электронной проводимостью.

Вы уже знаете, что электроны в металлах двигаются с постоянной скоростью из-за того, что взаимодействуют с ионами кристаллической решетки. Это приводит к тому, что скорость движения электронов пропорциональна напряженности электрического поля:

В свою очередь, напряженность пропорциональна напряжению. Из чего мы можем заключить, что скорость электронов в проводнике пропорциональна напряжению на концах этого проводника:

Напомним, что не так давно мы выяснили, что скорость также пропорциональна и силе тока:

Из этого мы можем сделать вывод, что 𝐼 ~ 𝑈, а это подтверждает закон Ома.

Теперь, когда мы выяснили, что электрический ток в металлах действительно обусловлен движением электронов, следует обратить внимание на одно из следствий этого явления. Электроны взаимодействуют с ионами кристаллической решетки и, тем самым нагревают проводник. Но, чем больше проводник нагревается, тем более интенсивными становятся колебания частиц проводника и тем больше они мешают движению электронов. Следовательно, в металлах существует определенная зависимость их электрического сопротивления от температуры.

Экспериментально была установлена зависимость сопротивления от температуры:

В формуле мы видим коэффициент пропорциональности α, который называется температурным коэффициентом сопротивления. Мы можем немного преобразовать выражение, описывающее зависимость сопротивления от температуры, чтобы дать определение температурному коэффициенту сопротивления:

Итак, температурный коэффициент сопротивления численно равен относительному изменению сопротивления при нагревании на 1 оС. Под относительным изменением сопротивления понимается отношение изменения сопротивления к конечному сопротивлению. Поскольку мы выяснили, что у металлов сопротивление увеличивается с увеличением температуры, можно сделать вывод, что для всех металлов коэффициент α > 0.

Вспомним, что сопротивление проводника зависит от трех величин: удельное сопротивление материала, из которого сделан проводник, площадь поперечного сечения проводника и его длина:

Поскольку геометрические размеры проводника при нагревании меняются ничтожно мало, можно сделать вывод, что изменяется удельное сопротивление:

Из полученной формулы можно сделать вывод, что удельное сопротивление металлов линейно зависит от температуры.

Эта зависимость используется в так называемых термометрах сопротивления. Термометр сопротивления представляет собой проводник, зависимость сопротивления которого от температуры хорошо известна. Чаще всего используют платиновую проволоку. Измеряя ее сопротивление можно судить о температуре. Преимущество подобного термометра заключается в том, что он пригоден для измерения температур в значительно более широком диапазоне, чем это возможно, используя жидкостные термометры.

Возникает вопрос: а что будет происходить при очень низких температурах? Этим вопросом еще в 1911 году задался Хейке Камерлинг-Оннес. В качестве опыта, он поместил ртуть в жидкий гелий и наблюдал, как постепенно уменьшается удельное сопротивление с падением температуры. Однако, когда температура опустилась до четырех целых одной десятой кельвина, сопротивление резко упало до нуля. Такое явление получило название сверхпроводимости, а температура, при которой наступает это состояние, была названа критической температурой.

Явление сверхпроводимости возникает во многих металлах при достаточно низких температурах (около 25 К). Это явление можно объяснить тем, что при таких низких температурах беспорядочное движение электронов становится очень незначительным. Иными словами, они двигаются, не соударяясь с ионами кристаллической решетки, таким образом, не замедляя своего движения и не нагревая проводник. Конечно, это объяснение существенно упрощено, но оно дает общее представление о том, как возникает явление сверхпроводимости. Тот факт, что в состоянии сверхпроводимости проводники не нагреваются, открывает большие перспективы. Если найти способ создать явление сверхпроводимости при обычных (комнатных) температурах, то можно было бы передавать электроэнергию по проводам без всяких потерь.

Сверхпроводимость используется для создания электромагнитов, которые могут создавать магнитное поле в течение длительного времени без всяких потерь энергии. Также, сверхпроводящие магниты используются в ускорителях элементарных частиц (таких как Большой Адронный Коллайдер). В 1986 году удалось создать некоторые соединения, переходящие в состояние сверхпроводимости при температурах около 100 К. На сегодняшний день, нет известных соединений, в которых бы наблюдалась сверхпроводимость при температуре выше 138 К (при нормальном давлении).

Рассмотрим еще один интереснейший эффект явления сверхпроводимости, который получил название эффекта Мейснера. Поместим два керамических цилиндра в специальную емкость и зафиксируем их.

При температуре 93 К эти цилиндры становятся сверхпроводящими. Для охлаждения можно использовать жидкий азот. Если теперь поднести к цилиндрам достаточно сильный магнит, то он зависнет над ними. Как вы знаете из курса физики девятого класса, при изменении магнитного потока через контур, возникает индукционный ток. В обычных условиях, этот ток был бы незначительным и кратковременным. Однако, в состоянии сверхпроводимости, сопротивление равно нулю, поэтому, ток продолжает течь по цилиндрам. Этот ток создает магнитное поле, которое и вызывает силы отталкивания между цилиндрами и магнитом. Если же теперь мы поместим над цилиндрами магнит в виде колесика и раскрутим его, то он будет продолжать крутиться до тех пор, пока цилиндры находятся в состоянии сверхпроводимости. Заметим, что магнит крутится, не касаясь цилиндров и не нагреваясь, то есть никаких потерь энергии не происходит. Тем не менее, нет возможности получить сколь угодно большой ток в сверхпроводниках, поскольку определенное критическое значение силы тока разрушает состояние сверхпроводимости. Однако, конструкции, основанные на подобном принципе, могли бы существенно усовершенствовать электродвигатели и генераторы, значительно упростить устройства для аккумулирования энергии и многое другое. Поэтому, сегодня получение сверхпроводимости при комнатных температурах является одной из очень важных задач в физике.

 

https://www.youtube.com/watch?v=y--EpYex7Hc&feature=emb_logo

https://www.youtube.com/watch?v=xnCr2sT6eZg

https://www.youtube.com/watch?v=c9PnM41nMu0

 

Д/З § - 108, 109 изучить, конспект



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-04-24 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: