ГЛАВА 1. БИОГРАФИЯ МЕНДЕЛЯ




ВВЕДЕНИЕ

 

 

Основоположником науки о наследственности — генетики — по праву считается австро-венгерский ученый Грегор Мендель. Работа исследователя, «переоткрытая» только в 1900 году, принесла посмертную славу Менделю и послужила началом новой науки, которую несколько позже назвали генетикой. До конца семидесятых годов XX века генетика в основном двигалась по пути, проложенному Менделем, и только когда ученые научились читать последовательность нуклеиновых оснований
в молекулах ДНК, наследственность стали изучать не с помощью анализа результатов гибридизации, а опираясь на физико-химические методы.

Законы Менделя — это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя. Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет».

Мендель занимался селекционированием гороха, и именно гороху, научной удаче и строгости опытов Менделя мы обязаны открытием основных законов наследуемости: закона единообразия гибридов первого поколения, закона расщепления и закона независимого комбинирования.

 

ГЛАВА 1. БИОГРАФИЯ МЕНДЕЛЯ

 

 

1.1 Детство и юность Менделя

 

 

О ранних годах в биографии ученого известно мало. Родился 20 июля 1822 года в Хейнцендорфе, историческая область Силезия, территориально относившаяся к Австрийской империи (ныне – село Гинчице, Чехия). Часто в источниках указывают вместо дня рождения крещение будущего монаха – 22 июля, что ошибочно.

Второй ребенок в крестьянской семье Антона и Розины, где также родились дочери Вероника и Терезия. Имел немецко-славянские корни. Земля, где жила семья, принадлежала роду Менделей свыше века. Сегодня отчий дом ученого превращен в музей.

Любовь к природе проявил в раннем возрасте. Увлеченно подрабатывал садовником, будучи мальчишкой, занимался пчеловодством. Рос слабым ребенком – на протяжении учебы часто пропускал месяцы занятий из-за болезней. Покончив с образованием в сельской школе, поступил в гимназию Троппау (ныне чешский город Опава), где проучился 6 классов.

Затем на протяжении 3 лет изучал практическую и теоретическую философию и физику в институте Ольмюца (ныне чешский университет Палацкого в Оломоуце). Интересный факт, что в это же время факультет естественной истории и сельского хозяйства возглавил Иоганн Карл Нестлер, интересовавшийся исследованием наследственных признаков растений и животных, например, овец.

Мендель тяжело переносил финансовую несостоятельность, потому что не мог оплачивать образование. Чтобы брат учился дальше, Терезия отдала собственное приданое. Позже Грегор сполна вернул долг, оказав поддержку трем племянникам – сыновьям сестры. Двое из юношей под его протекторатом впоследствии стали докторами.

В 1843-м Мендель решает постричься в монахи. В большей степени это решение продиктовано не набожностью фермерского сына, а тем, что духовные лица получали образование бесплатно. По его словам, монашеская жизнь избавила от «вечного беспокойства о средствах к существованию». После пострига в Августинском монастыре Святого Фомы в Брюнне (ныне чешский Брно) получил имя Грегор, Грегор Иоганн Мендель, и сразу же приступил к учебе в богословском институте. В 25 лет получил сан священника.

 

 

1.2 Становление Менделя как ученого

 

 

Мендель, естествоиспытатель и в то же время религиозный деятель, фигура неординарная. Пикантности ситуации добавляет то, что изучаемая им в будущем область дала начало новой научной дисциплине, раскладывающей теорию божественного замысла на геномы. Тяга Грегора к знаниям всепоглощающая. Непрестанно читал тома научной литературы, заменял педагогов на уроках в местной школе. Мужчина мечтал сдать экзамен на преподавателя, но провалился по геологии и биологии.

В 1849-1851 годах преподавал студентам Зноймской гимназии языки и математику. Позже переехал в Вену, где до 1853-го сам обучался естественной истории в Венском университете под патронажем ботаника и одного из первых цитологов Франца Унгера и физике у знаменитого Кристиана Доплера.

По возвращении в Брюнне преподавал эти дисциплины в Высшей реальной школе, хоть и не был дипломированным специалистом. В 1856-м снова пытался сдать экзамены на педагога, но вновь не сдал биологию. В этом же году Мендель серьезно увлекается научными опытами с растениями, интерес к гибридизации которых проявил еще в Вене. На протяжении 7 лет, до 1863 года, Грегор экспериментировал с горохом в монастырском саду и в эти годы совершил открытия.

Работы по гибридизации растений проводились задолго до Менделя, но лишь ему удалось вывести закономерности и структурировать основные тезисы работы, которыми генетики будут пользоваться вплоть до 70-х годов ХХ века.

В более чем 10 тыс. экспериментов участвовали свыше 20 разновидностей гороха, отличавшихся цветками и семенами. Титанический труд, учитывая, что каждую горошину нужно осматривать вручную. Для передачи в скрещенных формах лишь одного признака «сморщенный-гладкий» Грегор отсмотрел более 7 тыс. горошин, а таких признаков в работе было 7.

Полученные знания легли в основу учения о наследственности, на котором базируется генетика. В 1865-м опубликовал научный доклад «Опыты над растительными гибридами» в одном из томов Общества брюннских естествоиспытателей, где сформировал основные закономерности наследования, вошедшие в историю как законы Менделя.

 

 

Грегор был уверен, что исследовательские достижения имели фундаментальное значения для развития науки, поэтому заказал десятки оттисков работы и разослал видным ботаникам того времени. Увы, современников публикация не заинтересовала. Только профессор университета в Мюнхене Карл фон Негели посоветовал проверить теорию на других видах.

Мендель совершил ряд экспериментов по скрещиванию на иных растениях и насекомых – любимых с детства пчелах. К сожалению, Грегора ждало разочарование. По стечению обстоятельств и выбранный им вид растения, и пчелы имели особенности процесса оплодотворения и могли размножаться партеногенезом – «девственным путем». Из-за этого данные, полученные на опытах с горохом, не подтвердились.

Его вклад в науку оценили гораздо позже – в начале ХХ века, когда в 1900 году ряд ученых независимо друг от друга озвучили постулаты, выведенные Менделем еще в предшествовавшем столетии. Этот год принято обозначать годом рождения науки генетики. Роль менделизма в ней велика.

Советский генетик Борис Астауров описал научные поиски Грегора так:

«Судьба классической работы Менделя превратна и не чужда драматизма. Хотя им были обнаружены, ясно показаны и в значительной мере поняты весьма общие закономерности наследственности, биология того времени еще не доросла до осознания их фундаментальности.
Сам Грегор Мендель с удивительной проницательностью предвидел общезначимость обнаруженных на горохе закономерностей <…>. Прошло еще несколько лет, и он ушел из жизни, не предчувствуя, какие страсти будут бушевать вокруг его имени и какой славой оно, в конце концов, будет покрыто».

 

1.3 Последние годы Менделя

 

 

В 1868-м, после смерти духовного наставника Наппа, Мендель занимает пост аббата Старобрненского (Августинского) монастыря. С этого же года масштабные научные поиски завершились, уступив место хлопотам о вверенном святом месте. Грегор занимался административной работой, вступил в полемику со светской властью за введение дополнительных налогов для религиозных учреждений. Пост занимал до конца жизни.

Аббат Мендель скончался в 1884-м из-за хронического нефрита, в 61 год. На месте аббатства, которому служил почти 40 лет, позже открыли музей его имени. Могила находится в Брно. Ее венчает памятник со словами, принадлежавшими монаху: «Мое время еще придет».

 

 

ГЛАВА 2. ЗАКОНЫМЕНДЕЛЯ

 

 

2.1Закон единообразия гибридов первого поколения

 

 

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

При скрещивании организмов, различающихся по одной паре контрастных признаков, за которые отвечают аллели одного гена, первое поколение гибридов единообразно по фенотипу и генотипу. По фенотипу все гибриды первого поколения характеризуются доминантным признаком, по генотипу всё первое поколение гибридов гетерозиготное.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с желтыми и зелеными семенами, у всех потомков семена были желтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

 

 

2.2 Правило чистоты гамет

 

 

Каждая гамета несет одну аллель одного гена. При моногибридном скрещивании в случае полного доминирования у гетерозиготных гибридов (Аа) первого поколения проявляется только доминантный аллель (А); рецессивный же (а) не теряется и не смешивается с доминантным. В F2 как рецессивный, так и доминантный аллели могут проявляться в своем «чистом» виде. При этом аллели не только не смешиваются, но и не претерпевают изменений после совместного пребывания в гибридном организме. В результате гаметы, образуемые такой гетерозиготой, являются «чистыми» в том смысле, что гамета А «чиста» и не содержит ничего от аллеля а, а гамета а «чиста» от А. Это явление несмешивания аллелей пары альтернативных признаков в гаметах гибрида получило название правило чистоты гамет. Данное правило, сформулированное У. Бэтсоном, указывает на дискретность гена, несмешиваемость аллелей друг с другом и другими генами. Цитологическая основа правила чистоты гамет и закона расщепления заключается в том, что гомологичные хромосомы и локализованные в них гены, контролирующие альтернативные признаки, распределяются по разным гаметам.

 

 

2.3 Кодоминирование и неполное доминирование

 

 

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования. Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот.

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека, где А и В — доминантные гены, а 0 — рецессивный. По этой системе генотип 00 определяет первую группу крови, АА и А0 — вторую, ВВ и В0 — третью, а АВ будет определять четвёртую группу крови. Т.о. всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвертая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Явления кодоминирования и неполного доминирования признаков слегка видоизменяет первый закон Менделя: «Гибриды первого поколения от скрещивания чистых линий особей с противоположными признаками всегда одинаковы по этому признаку: проявляют доминирующий признак, если признаки находятся в отношении доминирования, или смешанный (промежуточный) признак, если они находятся в отношении кодоминирования (неполного доминирования)».

 

 

2.4 Закон расщепления признаков

 

 

Из гибридных семян гороха Г. Мендель вырастил растения, которые путем самоопыления произвели семена второго поколения. Среди них оказались не только желтые семена, но и зеленые. Всего он получил 2001 зеленое и 6022 желтых семян. Следовательно, отношение числа потомков второго поколения с доминантным признаком к числу потомков с рецессивным оказалось равным 3:1. Такое явление он назвал расщеплением признаков.

Сходные результаты во втором поколении дали многочисленные опыты по гибридологическому анализу других пар признаков. Основываясь на полученных результатах, Г. Мендель сформулировал свой второй закон - закон расщепления. В потомстве, полученном от скрещивания гибридов первого поколения наблюдается явление расщепления: четверть особей из гибридов второго поколения несет рецессивный признак, три четверти - доминантный.

Для того чтобы выяснить, как будет осуществляться наследование признаков при самоопылении в третьем поколении, Мендель вырастил гибриды второго поколения и проанализировал потомство, полученное от самоопыления. Он выяснил, что 1/3 растений второго поколения, выросших из желтых семян, при самоопылении производила только желтые семена. Растения, выросшие из зеленых семян, давали только зеленые семена. Оставшиеся 2/3 растений второго поколения, выросшие из желтых семян, давали желтые и зеленые семена в отношении 3:1. Таким образом, эти растения были подобны гибридам первого поколения.

Итак, Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных (от греч. «гомо» - равный, «зигота» - оплодотворенная яйцеклетка). Особи, в потомстве у которых обнаруживается расщепление, назвали гетерозиготными (от греч. «гетеро» - разный).

 

 

2.5 Закон независимого наследования признаков

 

 

При скрещивании особей, отличающихся по двум и более альтернативным парам признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. Для дигибридного скрещивания Мендель использовал гомозиготные растения гороха, различающиеся одновременно по двум парам признаков. Одно из скрещиваемых растений имело желтые гладкие семена, другое - зеленые морщинистые.


Все гибриды первого поколения этого скрещивания имели желтые гладкие семена. Следовательно, доминирующими оказались желтая окраска семян над зеленой и гладкая форма над морщинистой. Обозначим аллели желтой окраски А, зеленой - а, гладкой формы- В, морщинистой- b. Гены, определяющие развитие разных пар признаков, называются неаллельпыми и обозначаются разными буквами латинского алфавита. Родительские растения в этом случае имеют генотипы АА ВВ и aabb, а генотип гибридов F1 -АаВb,т. е. является дигетерозиготным.

Во втором поколении после самоопыления гибридов F1 в соответствии с законом расщепления вновь появились морщинистые и зеленые семена. При этом наблюдались следующие сочетания признаков: 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых семян. Это соотношение очень близко к соотношению 9:3:3:1.

Чтобы выяснить, как ведет себя каждая пара аллелей в потомстве дигетерозиготы, целесообразно провести раздельный учет каждой пары признаков - по форме и окраске семян. Из 556 семян Менделем получено 423 гладких и 133 морщинистых, а также 416 желтых и 140 зеленых. Таким образом, и в этом случае соотношение доминантных и рецессивных форм по каждой паре признаков свидетельствует о моногибридном расщеплении по фенотипу 3:1. Отсюда следует, что дигибридное расщепление представляет собой два независимо идущих моногибридных расщепления, которые как бы накладываются друг на друга. Проведенные наблюдения свидетельствуют о том, что отдельные пары признаков ведут себя в наследовании независимо. В этом сущность третьего закона Менделя.

 

 

2.6 Условия соблюдения законов наследования Менделя

 

 

Законы открытые Грегором Менделем применимы в генетике не всегда. Существуют многие условия соблюдения законов Менделя. Для таких случаев существуют другие законы или объяснения.

Для соблюдения закона единообразия гибридов первого поколения необходимо, чтобы:

· родительские организмы были гомозиготными;

· гены разных аллелей находились в различных хромосомах, а не в одной (иначе может произойти явление «сцепленного наследования»).

· Закон расщепления будет соблюдаться, если

· у гибридов наследственные факторы сохраняются в неизменном виде;

Закон независимого распределения генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь слу­чае, если пары аллельных генов расположены в разных парах гомологичных хромосом.

Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении; либо к искажению соотношения различных генотипов и фенотипов. Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. В целом они справедливы для аутосомных генов с полной пенетрантностью (100%-ой частотой проявления анализируемого признака; 100%-ая пенетрантность подразумевает, что признак выражен у всех носителей аллеля, детерминирующего развитие этого признака) и постоянной экспрессивностью; постоянная экспрессивность подразумевает, что фенотипическая выраженность признака одинакова или примерно одинакова у всех носителей аллеля, детерминирующего развитие этого признака.

 

ЗАКЛЮЧЕНИЕ

 

 

Законы Грегора Менделя, в настоящее время, имеют широкое применение в селекции растений, животных и микроорганизмов, в медицине, генной инженерии и многих других отраслях жизни человека. Также они применяются в решении задач по генетике.

Важно заметить, что Мендель формулировал законы и делал выводы во времена, когда ни о ДНК, ни о генах и хромосомах было ни чего не известно. Однако он оказался совершенно прав, и хотя и не сразу, но его теории были признаны и взяты за основу развивающейся науки – генетики.

Опыты Менделя послужили основой для развития современной генетики – науки, изучающей два основных свойства организма – наследственность и изменчивость. Ему удалось выявить закономерности наследования благодаря принципиально новым методическим подходам:

1) Мендель удачно выбрал объект исследования;

2) он проводил анализ наследования отдельных признаков в потомстве скрещиваемых растений, отличающихся по одной, двум и трем парам контрастных альтернативных признаков. В каждом поколении велся учет отдельно по каждой паре этих признаков;

3) он не просто зафиксировал полученные результаты, но и провел их математическую обработку.

Перечисленные простые приемы исследования составили принципиально новый, гибридологический метод изучения наследования, ставший основой дальнейших исследований в генетике.

 

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 

 

1. Гайсинович А. Е. Грегор Мендель (биографический очерк). Из книги «Грегор Мендель // Опыты над растительными гибридами» / ред. и комм. Гайсинович А. Е., отв.ред. Астауров Б.Л.. — М.: Наука, 1965. — С. 132.

2. Заяц Р. Г. и др., Биология для поступающих в вузы. МН.: Высшая школа, 1999

3. Мендель Г. Опыты над растительными гибридами // Труды Бюро по прикладной ботанике. 1910. Т. 3. № 11. С. 529.

4. Ручинский А. О. Общая биология. Учебник для 10-11 классов школ с углубленным изучением биологии. Москва, «Просвещение» 1993.

5. https://ru.wikipedia.org/wiki/Мендель,_Грегор_Иоганн

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-12-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: