Использование фотоупругого эффекта для измерения физических величин




Измерение давления

 

Использование эффекта фотоупругости для определения распределения напряжения имеет давнюю историю и является основой успешных коммерческих предприятий в настоящее время (Measurements Group Inc., Роли, Северная Каролина). Первое предложение использовать фотоупругость в качестве механизма преобразования волоконно-оптического датчика относится к 1980 году; решение о выдаче патента на концепцию было принято в 1983-м. Этот датчик, датчик давления, имел один волоконный вход и два волоконных выхода (рисунок 2.1). Согласно концепции этого датчика свет I ooтисточника (101), расположенного в области обработки сигнала, вводился в многомодовое оптическое волокно (121). Выходящий из волокна свет в области измерений коллимировался, приобретал круговую поляризацию и проходил через чувствительный к давлению фото упругий элемент (204), сконфигурированный для восприятия линейного напряжения вдоль оси, повернутой на π /4 к оси поляризации проходящего через элемент светового луча. Затем этот свет пропускался через та кое устройство, как поляризующий светоделитель (205), который вводит компоненты оптического луча, поляризованные под углами π /4 и - π/4, в отдельные выходные оптические волокна (111 и 113). Свет по этим двум волокнам поступает в область обработки сигнала, регистрируется двумя фотодетекторами (112 и 114) и затем обрабатывается с целью получения информации о давлении. Оптическая мощность (при отсутствии оптических потерь), регистрируемая двумя фотодетекторами, может быть вы числена путем анализа оптической системы, представленной на рисунке 2.1, при помощи формализма Мюллера. Эти мощности равны


, (2.1)

 

Здесь предполагается, что давление Р, воспринятое датчиком, механически преобразовано в эквивалентное линейное напряжение в области, пересекаемой световым лучом. Использование отношения разности к сумме позволяет снизить или устранить ошибки в системе, обусловленные создаваемыми источником излучения флуктуациями оптической мощности I0. Выходное напряжение обрабатывающей схемы определяется выражением

 

в пределах для малых Р. (2.2)

 

Можно видеть, что величина I0 в уравнение не входит, и в пределе при малых давлениях линейная взаимосвязь между выходным напряжением и приложенным давлением существует независимо от флуктуации оптической энергии, подаваемой на чувствительный элемент.

 

Рисунок 2.1-Волоконно-оптический датчик давления на основе эффекта фотоупругости

 

Одна из первых практических демонстраций датчика давления на основе фотоупругости состоялась в 1982 году. В этом датчике в качестве чувствительного элемента использовался блок натрий-кальциево-силикатного стекла. Датчик имел только один выходной канал. Принципиальная схема этого датчика приведена на рисунке 2.2. В этом конкретном датчике в качестве оптического источника применяется лазерный диод с волоконными выводами, кварцевое оптическое волокно с пластмассовой оболочкой и диаметром сердцевины 200 мкм, и стержневые градиентные линзы (GRIN).

Активный фотоупругий элемент представлял собой призму размером 0,6 х 0,6 х 1,2 см из пирекса (fa = 0,26 МПа/полосу/м). Давление на него передавалось Be-Cu-мембраной, как показано на рисунке 2.2. Были про ведены только лабораторные испытания этого прибора. Результаты тестирования приведены на рисунке 2.3. По экспериментальной кривой, представленной на рисунке 2.3, а, экспериментально

 

Рисунок 2.2-Многомодовый волоконно-оптический датчик давления на основе эффекта фотоупругости

 

Было определено минимальное обнаружимое давление. Эти данные количественно определяют относительное изменение оптической интенсивности, воспринимаемое, когда чувствительный элемент давления заполнен водой, эквивалентное изменению давления на мембрану величиной 0,9 кПа. Разделив ширину выхода в устойчивом состоянии (т.е. 0,2 ед.) на изменение сигнала для данной разности давлений, можно определить минимальное обнаружимое давление как Pmin = 95 Па. Это в 67 раз больше, чем минимальное обнаружимое давление (1,4 Па). Различие объяснялось сочетанием шума от лазерного источника и недостаточной передачи давления от мембраны к активному элементу. На рисунке 2.3, б приведена зависимость выходного сигнала прибора от приложенного гидростатического давления. Кривая демонстрирует диапазон линейности от 0 до 0,5 МПа и диапазон измерений, превышающий 8 МПа. Измеренный динамический диапазон составил 86 дБ, в то время, как вычисленный динамический диапазон превышал 120 дБ [дБ определяется здесь как 201og(Pmax/Pmin)]. В качестве верхнего предела гистерезиса этого датчика было установлено примерно ±1% от полной шкалы.

 

Рисунок 2.3-Регистрируемые сигналы от волоконно-оптического датчика давления на основе эффекта фотоупругости

 

Описание усовершенствованного варианта датчика давления на основе эффекта фотоупругости было опубликовано в 1983 году. В этом датчике (рисунок 2.4) вместо лазерного диода использовался светоизлучающий диод и два оптических канала были реализованы так, что зарегистрированную разность/сумму сигнала можно было использовать для компенсации амплитудного шума оптического источника. Принципиальная схема датчика приведена на рисунке 2.4. Подробная схема расположения оптических элементов показана на рисунке 2.5. В датчике излучение, прошедшее по входному оптическому волокну, коллимируется стержне вой градиентной линзой, отражается параллельно поверхности корпуса датчика и линейно поляризуется поляризующим светоделителем. Затем четвертьволновая пластина преобразует луч, придавая ему круговую поляризацию. После этого луч света проходит через активный чувствительный элемент (стеклянную призму), который подвергается напряжению с помощью латунного поршня, используемого для передачи напряжения от Be-Cu-мембраны. Затем полуволновая пластинка используется для поворота осей поляризации оптического луча на π/4, чтобы привести их в соответствие с осями выходного поляризующего светоделителя, встроенного в корпус датчика.

 

Рисунок 2.4-Датчик давления на основе эффекта фотоупругости с двойным выходом

 

Две поляризованные компоненты (соответствующие свету, поляризованному под углами ± π/4 к оси напряжения) вводятся после этого в от дельные оптические волокна с помощью стержневых градиентных линз для передачи в область расположения фотодетекторов. Анализ этой системы оптических элементов (если пренебречь потерями на отражение, коллимацию и выравнивание) показывает, что оптические сигналы, пере даваемые по двум выходным волокнам, описываются уравнением (2.1). Было установлено, что при отсутствии приложенного давления мощность сигналов, передаваемых по двум выходным волокнам, равна 5,3 и 8,9 мВт. Эти величины отличались от базовых значений, равных 4,8 и 4,9 мВт, из-за остаточного напряжения, приложенного к чувствительному элементу, когда затягивалось удерживающее кольцо на Be-Cu-мембране, что бы обеспечить отсутствие утечки масла в корпус датчика. Для зарегистрированных оптических мощностей, измерения анализатором спектра сигналов, зарегистрированных при помощи регистрирующего фотодиода в фоторезисторном режиме с нагрузкой 200 кОм, показали, что оптический дробовой шум является преобладающим источником шума. Измеренные уровни шума составляли —135 и —138 дБ/ ;; предсказанные значения дробового шума составляли —134 и —137 дБ / соответственно. Измеренные значения уровней шума в сочетании с наблюдаемым изменением интенсивности, вызванным приложенным давлением, определили динамический диапазон каналов равным 123 и 118 дБ, при условии 1 Гц полосы пропускания, при минимальных обнаружимых давлениях, равных 4,8 и 8,3 Па.

 

Рисунок 2.6-Принципиальная схема датчика давления на основе эффекта фото упругости с двойным выходом

 

Выходы двух детекторов были объединены с простой электронной схе мой, чтобы обеспечить выход, пропорциональный разности/сумме двух сигналов. Типичная характеристика датчика, в котором используется та кой способ обработки, показана на рисунке 2.8. Однако было обнаружено, что схема обработки увеличивает уровень выходного шума на 30 дБ / , таким образом существенно снижая разрешение и уменьшая динамический диапазон датчика. Это показывает, что схема обработки сигнала после фотодетектора требует тщательной разработки и выбора компонент.

 

Рисунок 2.7-Подробная схема расположения оптических элементов датчика давления на основе эффекта фотоупругости с двойным выходом

 

Рисунок 2.8-Выходное электрическое напряжение датчика давления на основе эффекта фотоупругости с двойным выходом

 

Также был продемонстрирован простой одноосевой волоконно-оптический акселерометр, основанный на эффекте фотоупругости. Масса в 16 г, прикрепленная к грани х фотоупругого элемента, позволяет преобразовывать силы, обусловленные ускорением, в напряжение материала. Было протестировано два различных типа чувствительного фотоупругого материала: пирекс и полиуретан. Размеры стеклянного элемента составляли 0,6 х 0,6 х 1,2 см и оптическая длина пути 0,6 см. Полиуретановый элемент имел размеры 1,0 х 0,6 х 1,5 см при оптической длине пути, также равной 0,6 см. Прибор оценивался двумя способами. Во-первых, определялся отклик чувствительного элемента на статическую нагрузку. Это обеспечило прямое измерение коэффициента оптической чувствительности материала на рабочей длине волны лазерного диода с волоконными выводами RCA С86007, равной 820 нм. Для элементов из стекла и полиуретана, соответственно, эти коэффициенты составили: fa (стекла) = 0,13 МПа/полоса/м и fa (полиуретана) = 104 Па/полоса/м. При втором измерении одновременно волоконно-оптический акселерометр и эталонный акселерометр Bruel & Kjaer, типа 4371, были жестко закреплены на вибрационном столе Cleveland, модель VP-7-2, и подвергнуты вертикальному ускорению с частотой 100 Гц. Измерения выходных сигналов, проведенные спектроанализатором Tektronix 7LS, позволили определить динамические отношения сигнал/шум. Экспериментально определенные минимально обнаружимые пиковые ускорения для стеклянного и полиуретанового элементов составили 1,5 х 10-3 и 8,5 х 10-5 см/с2 соответственно. Теоретические минимально обнаружимые ускорения составляли 6,5 х 10-4 и 1,7 х 10-5 см/с2 для тех же элементов, что указывает на то, что по крайней мере при частоте 100 Гц существует приемлемое соответствие между теорией и реальными характеристиками. Источником расхождений, вероятно, стал амплитудный шум от лазерного диода, являющегося источником излучения. Демонстрация волоконно-оптического акселерометра показала, что подобный прибор можно реализовать сравнительно недорого и напрямую. Однако его принципиальное преимущество проявляется в ситуациях когда присутствуют только линейные ускорения. В более сложных ситуациях, силы сдвига, действующие на фотоупругий элемент при ускорении прикрепленной массы, могут сделать значение зарегистрированного сигнала неопределенным.

Наибольшее развитие волоконно-оптические датчики, на основе эффекта фотоупругости получили в приложениях, связанных с акустическими измерениями. Измерительная конфигурация первого образца датчика такого типа, была аналогичной приведенной на рисунке 2.1 и имела два волоконных выхода. Свет от гелий-неонового лазера мощностью 2 мВт фирмы Hughes вводился в волокно со ступенчатым профилем показателя преломления и диаметром сердцевины 100 мкм и передавался преобразователю. Затем он коллимировался с помощью стержневой градиентной линзы, приобретал круговую поляризацию и проходил через фотоупругий чувствительный элемент. Компоненты (1 + sin) и (1 — sin) выходного сигнала затем разделялись поляризующим светоделителем и вводились в различные выходные волокна для передачи в область обработки сигнала, где они регистрировались двумя фотодиодами RCA С30808. Фотоупругий элемент, имеющий двутавровый профиль, был изготовлен из Thiokol Solithane Urethane 113 и его площадь поперечного сечения вверху и внизу составляла 0,6 х 0,6 см, а площадь поперечного сечения в области, пересекаемой оптическим лучом, равнялась 0,6 х 0,2 см.

Экспериментально определенная оптическая постоянная по напряжениям равнялась f a = 210 Па/полоса/м. Корпус акустического датчика представлял собой полый алюминиевый цилиндр высотой 8 см с внутренним диаметром 8,5 см и внешним диаметром 5,0 см. Активный фотоупругий элемент был выровнен между входной и выходной оптикой и за тем присоединен к двум тонким резиновым мембранам, закрепленным сверху и снизу корпуса с помощью алюминиевых удерживающих колец. Преобразователь был заполнен воздухом. При отсутствии приложенного давления оптическая мощность, попадающая на два фотодетектора, составляла 41 и 17 мкВт соответственно. Для компенсации этой разницы оптических мощностей было подстроено усиление по напряжению двух фотодетекторов, путем использования на первом детекторе нагрузки 100 кОм и на втором — нагрузки 200 кОм. Эти два приблизительно равных выходных напряжения затем вычитались и усиливались в 10 раз с помощью дифференциального усилителя PAR модели 113. После этого выходной сигнал усилителя анализировался спектроанализатором Tektronix 7LS. Прибор был протестирован на калибраторе гидрофонов NRL G19 путем наблюдения за отношением сигнал/шум в приборе, подвергавшемся воздействию акустических волн известной интенсивности и частоты. Фактические акустические интенсивности проверялись при помощи калиброванного электрического гидрофона CH-17UT. Измерения показали, что динамический диапазон прибора превышает 120 дБ (где напряжение пропорционально давлению и дБ = 20 logV). Также было определено минимальное обнаружимое давление 47 дБ относительно 1 мкПа/ при 500 Гц. Кроме того, было установлено, что определение разности двух выходных сигналов обеспечивает подавление амплитудного шума от 10 до 12 дБ по сравнению с одноканальной характеристикой, что указывает на значительный амплитудный шум гелий-неонового источника. Хотя из-за отсутствия компенсации статического давления возможности применения данного акустического датчика ограниченны, он продемонстрировал, что по своим характеристикам волоконно-оптические акустические датчики могут сравняться или превзойти существующие электрические датчики.

Первая демонстрация волоконно-оптических акустических измерений на основе эффекта фотоупругости привела к демонстрации системы, в которой была реализована и протестирована волоконно-оптическая гидроакустическая антенная решетка на основе эффекта фотоупругости с компенсацией по температуре и статическому давлению, состоявшая из четырех отдельных преобразователей с общим оптическим источником и модулем регистрации. Процесс разработки, создания и тестирования действующей системы был слишком длинным, и его невозможно здесь подробно описать. Но каждому желающему выполнить дополнительную работу в этой области рекомендуется ознакомиться с заключительным отчетом по этой теме, спонсируемой лабораторией по морским исследованиям, как с практической иллюстрацией проблем, которые приходится преодолевать при создании реальных систем.

Из приведенного выше описания волоконно-оптических датчиков на основе эффекта фотоупругости понятно, что существует широкий спектр потенциальных возможностей их применения. Как правило, эти датчики кодируют изменения исследуемого параметра через изменения интенсивности регистрируемого оптического сигнала. Чтобы исключить ошибки, вызываемые изменениями оптической интенсивности, не обусловленными изменениями исследуемого параметра, необходимо использовать какой-либо внутренний опорный сигнал, а если это невозможно, то откалибровать датчик и поддерживать калибровку в течение всего времени эксплуатации. Продемонстрировано множество методов использования внутреннего опорного сигнала, часто в сочетании с мультиплексированием. Сочетание этих методов мультиплексирования и использования внутреннего опорного сигнала с продемонстрированными датчиками позволяет уже в настоящее время использовать датчики на основе эффекта фотоупругости, если анализ отношения эффективность/стоимость показывает, что такие системы предлагают достаточно существенные преимущества, чтобы преодолеть инерцию применения более традиционных электрических систем. Кроме того, предметом исследований являются альтернативные способы кодирования измерительной информации по длине волны, а не по интенсивности. Однако работа в этой области ограничена из-за отсутствия надежных широкополосных твердотельных источников, совместимых с волоконной оптикой, и трудностей обеспечения точной и эффективной по стоимости обработки модулированного сигнала. Современные разработки оптических излучателей/детекторов позволяют предположить, что спектральное кодирование может стать более реализуемым на практике, чем в прошлом, и по этой причине сейчас мы вернемся к анализу типа датчиков, использующих модуляцию по длине волны для кодирования информации о положении.

 




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: