Гомогенный металлокомплексный катализ.




Использование металлокомплексного катализа в тонком органическом синтезе, а также в различных промышленных процессах, в том числе фармацевтических производствах, представляет собой, как говорят, "горячую" область химии, на которой сосредоточено внимание большого числа исследовательских групп как в академических, так и промышленных организациях. Ежегодно в этой области в различных журналах публикуется огромное число работ. Без преувеличения можно сказать, что уже достигнуты грандиозные успехи. Катализ комплексами переходных металлов позволяет не только ускорить медленно идущие реакции, но и осуществить такие превращения, которые в рамках классической органической химии были невозможны13.

К числу таких реакций относятся многие реакции создания связи С – С и С – Х (где Х - гетероатом), но наиболее впечатляющим примером является асимметрическое каталитическое гидрирование олефинов.

Однако, прежде чем разбирать конкретный пример, остановимся на основных чертах гомогенного металлокомплексного катализа. Выясним, почему именно этот тип катализа оказался столь привлекательным в сравнении с традиционным гетерогенным катализом для органического синтеза.

Известно, что катализатор ускоряет реакцию, заменяя высокоэнергетический барьер некатализируемой реакции на серию стадий со значительно более низкими энергетическими барьерами. Это обстоятельство важно для промышленного применения таких процессов, поскольку позволяет экономить энергию и время, а именно эти факторы определяют эффективность процесса. Но особенно интересны реакции, которые можно осуществить только в присутствии катализатора, то есть те реакции, которые без катализатора происходят бесконечно медленно.

Все сказанное относится в равной мере к гомогенному и гетерогенному катализу. Чем же отличается гомогенный металлокомплексный катализ? Преимущества гомогенного металлокомплексного катализа прежде всего связаны с его исключительной селективностью и эффективностью.

Взятый в сотой или даже тысячной доле от количества исходного соединения, катализатор способен осуществить его полное превращение в продукт14. Таким образом, даже при высокой стоимости катализаторов процесс становится экономически выгодным. Важной характеристикой гомогенных реакций, катализируемых комплексами металлов, является то, что их удается провести почти без образования побочных продуктов с селективностью, близкой к 100%. Это делает процессы, как принято теперь говорить, дружественными экологически, дает возможность создавать безотходные технологии.

Использование в качестве катализаторов комплексов переходных металлов с хиральными (оптически деятельными) лигандами позволяет осуществлять асимметрические синтезы с использованием небольшого количества хирального материала. Известно, что в некаталитических процессах для получения оптически активного соединения требуется использовать стехиометрическое количество хирального реагента. В реакциях, катализируемых комплексами металлов, достаточно иметь хиральный лиганд при металле, применяемом в каталитическом количестве. Гетерогенный вариант реакции пока не позволяет осуществлять асимметрический синтез. При правильно подобранном лиганде, что, конечно, требует большой работы, интуиции и удачи, возможно осуществить реакции с энантиоселективностью, близкой к той, которая наблюдается только в энзиматических (ферментативных) процессах15. Это обстоятельство чрезвычайно важно, так как нужная биологическая активность часто связана с оптической чистотой продукта. Синтез оптически активных соединений из прохиральных исходных соединений является наиболее ярким достижением гомогенного катализа. Здесь, несомненно, можно сказать, что химия вступает в конкуренцию с природой, которая с помощью ферментов проводит синтез с образованием только одного оптического изомера, то есть со стопроцентной стереоселективностью.

Однако наряду с неоспоримыми достоинствами гомогенный катализ имеет и недостатки. Прежде всего это трудность отделения металлокомплексного катализатора от продукта и возможность повторного использования. Именно в этом он, прежде всего, проигрывает гетерогенному катализу. Во многих случаях этот недостаток препятствует его применению, поскольку при получении биологически активных соединений, используемых в качестве лекарств, недопустимо содержание даже следовых количеств металла в продукте. Экономический фактор также важен. Природа устроила все таким образом, что наиболее сильным каталитическим действием обладают металлы платиновой группы, являющиеся драгоценными металлами, поэтому важно не только количественно извлечь металл, но и суметь регенерировать катализатор. В асимметрических синтезах стоимость хирального лиганда может значительно превышать стоимость драгоценного металла, поэтому возможность повторного, а тем более многократного использования металлокомплексного катализатора представляет важную задачу, на решение которой сейчас направлены большие усилия.

Другим недостатком гомогенных металлокомплексных катализаторов является их неустойчивость, в связи с чем их часто трудно синтезировать (за исключением тех случаев, когда они образуются из доступных предшественников in situ) и с ними трудно манипулировать. Тем не менее, преимущества этого катализа перед катализом металлами, нанесенными на различные носители, который пока превалирует в промышленности, если говорить об эффективности, совершенно очевидны. А каталитическое получение оптически активных соединений с высокой оптической чистотой возможно пока только с использованием гомогенного катализа.

Гомогенный катализатор находится в той же фазе (обычно в растворе), в которой происходит реакция. Это обстоятельство позволяет изучить механизм реакции значительно легче, чем для гетерогенных реакций. Для того чтобы изучить такой механизм, нужно прежде всего изучить кинетику реакции. Именно на основе информации, полученной при изучении скорости реакции и влияния на нее различных факторов (концентрации реагентов, температуры, природы растворителя и различных добавок), можно составить представление о механизме реакции16. Однако истинный механизм реакции может далеко не совпадать с предложенным на основании кинетических исследований. Поэтому обычно говорят, что предлагаемая схема не противоречит имеющимся данным. Более достоверные данные удается получить при изучении промежуточно образующихся соединений - интермедиатов, что обычно делается с помощью спектральных методов: ядерного магнитного резонанса (ЯМР) или инфракрасной спектроскопии (ИК). Иногда полезными оказываются использование изотопномеченных соединений и определение судьбы меченого атома.

Чрезвычайно важную информацию о механизме реакции вообще и каталитической реакции в частности удается получить при изучении оптически активных соединений, имеющих стереогенный (хиральный) центр в качестве реакционного центра. При этом удается определить стереохимический результат реакции, установить, протекает ли она с сохранением конфигурации реакционного центра, ее потерей (рацемизацией) или обращением стереохимической конфигурации. Полученный результат дает веские аргументы в пользу определенного механизма реакции. Знание механизма позволяет управлять реакцией. Для каталитических реакций, особенно используемых в промышленности, это имеет огромное значение, поскольку за этим стоит индустрия с ее огромными затратами и еще большими доходами.

Для того чтобы понять, как работает металлокомплексный катализатор, нужно рассмотреть каталитический цикл, в который он вовлечен. Важно понять, какие факторы определяют высокую селективность катализатора. Ведь именно селективность является чертой природных катализаторов - энзимов или ферментов, многие из которых содержат металл в своем активном центре.

Необходимым условием для большинства металлокомплексных катализаторов является наличие (или возможность создания) вакантного координационного места, по которому к нему присоединяется реагент17. Такие вакансии существуют у координационно ненасыщенных комплексов, и именно поэтому эти комплексы могут быть активными катализаторами. Вакантные места у атома металла возникают при потере (диссоциации) связанных с ним лигандов. Возникает вопрос: а возможно ли вытеснение этих лигандов под действием реагента, например олефина, из сферы металла? В принципе такой путь возможен, но при этом молекулы, занявшие места ушедших лигандов, должны быть более прочно связаны с атомом металла. Однако сильная связь с металлом делает их малореакционноспособными. Так, например, прочно связанный с металлом олефин не будет подвергаться гидрированию. Мы видим, какие разнообразные требования предъявляются к катализатору: с одной стороны, он должен связывать реагент и тем самым активировать его, с другой - эта связь не должна быть столь прочной, чтобы реагент не потерял способность вступать в дальнейшие превращения.

Природа металла очень важна для каталитических свойств комплекса. Ясно, что эти металлы должны иметь по крайней мере два относительно стабильных окислительных состояния (характерная черта переходных металлов - наличие нескольких валентных состояний). Они должны образовывать комплексы с различным числом координирующихся лигандов, в том числе и относительно стабильные ненасыщенные комплексы. Для того чтобы катализировать процессы гидрирования, эти металлы должны образовывать гидриды (моно- или дигидриды). Поскольку субстраты типа алкенов должны координироваться с металлами, последние должны обладать свободными орбиталями, соответствующими орбиталям субстрата (s-донирование с алкена), и заполненными орбиталями, способными к p-донированию с алкеном. Таким требованиям отвечают многие металлы, такие, как Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt. Однако не все их комплексы являются катализаторами, более того, каждый тип комплекса часто катализирует только определенный тип реакций. Вообще в настоящее время положение в этой области таково, что, используя богатый накопленный опыт, можно достаточно быстро подобрать подходящий катализатор для известного превращения, однако до создания предсказательной теории пока еще далеко.

Одним из наиболее важных процессов, катализируемых комплексами переходных металлов, является гомогенное гидрирование. Гидрирование является важной промышленной реакцией, используемой при нефтепереработке, получении маргарина из жидких растительных масел, в фармацевтической промышленности при получении лекарственных препаратов из предшественников, имеющих кратные связи.

В этих процессах переход от катализа металлами, нанесенными на носитель, к гомогенным металлокомплексным катализаторам позволяет осуществлять реакции в значительно более мягких условиях, при низких температурах и давлениях, часто при атмосферном давлении. Не менее важно, что в этих условиях реакции происходят хемоселективно, например, при наличии нескольких кратных связей удается осуществить избирательное гидрирование только одной из них.

В заключение нужно отметить, что металлокомплексный катализ прочно вошел в арсенал современной органической химии. Не будет преувеличением сказать, что он в существенной мере изменил лицо органической химии. Это особенно относится к асимметрическому синтезу, в котором все чаще используют реакции, катализируемые комплексами переходных металлов с хиральными лигандами. Некоторые из этих процессов уже стали многотоннажными промышленными производствами, свидетельствующих о том, что методы металлокомплексного катализа вошли в кровь и плоть органического синтеза.

Список литературы.

1. Боресков Г.К., Слинько М.Г. Каталитическая химия / Г.К. Боресков. – Хим.пром, 1955. – 19-26 с.

2. Боресков Г.К. Катализ Ч. 1. / Г.К. Боресков – Новосибирск.: Наука, 1971. – 267 с.

3. Киперман С.Л. Кинетика и катализ / С.Л. Киперман – М.: Наука, 1972. – 740 с.

4. Киперман С.Л. Введение в кинетику гетерогенных каталитических реакции / С.Л. Киперман – М.: АкадемКнига, 1964. – 606 с.

5. Елович С.Ю., Розинг В.С. Проблемы кинетики и катализа / С.Ю. Елович – М.: Наука, 1937. – 457 с.

6. Пшежецкий С.Я. Рубенштейн Р.Н. Термодинамические и кинетические аспекты катализа / С.Я. Пшежецкий – М.: Наука, 1946. – 518 с.

7. Андерсен Р.Э. Экспериментальные методы исследования катализа / Р.Э. Андерсен – М.: Мир, 1972. – 480 с.

8. Edelmann F.T., Freckmann D.M.M., Schumann H. Synthesis and Structural Chemistry of Non-Cyclopentadienyl Organolanthanide Complexes. // Chem. Rev. 2002. V. 102. P. 1851–1896.

9. Piers W.E., Emslie D.J.H. Non-cyclopentadienyl ancillaries in organogroup 3 metal chemistry: a fine balance in ligand design. // Coord. Chem. Rev. 2002. V. 233. P. 131–155.

10. Bochkarev M. N., Zakharov L. N., Kalinina G. S. Organoderivatives of Rare Earth Elements. Kluwer Academic Publishers, Dordrecht, 1995.

11. Коллмен Дж., Хигедас Л., Нортон Дж., Финке Р. Металлоорганическая химия переходных металлов. М.: Мир, 1989.

12. Rylander R. Catalytic Hydrogenation in Organic Synthesis. N.Y.: Acad. Press, 1979.

13. Noyori R., Takaya H. // Acc. Chem. Res. 1990. Vol. 23. P. 345.

14. Tsuji J. Palladium Reagents and Catalysts Innovations in Organic Synthesis. Chichesta etc.: Wiley, 1995.

15. Темкин О.Н. Каталитическая химия / О. Н. Темкин. – М.: Наука, 1969. – 617 с.

16. Темкин О.Н. Промышленный катализ и экологически безопасные технологии / О. Н. Темкин. – М.: АкадемКнига, 1958. – 423 с.

17. Караханов Э.А. Синтез-газ как альтернатива нефти. 1. Процесс Фишера-Тропша и оксо-синтез / Э.А. Караханов. – М.: АкадемКнига, 1997. – 389 с.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-21 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: