Тема лекции: Нормальный закон распределения




 

Функция распределения F(x) и соответствующая ей плотность распределения f(x) представляют собой некоторую математическую модель свойств исследуемой случайной величины (отклика), значения которой регистрируются в ходе эксперимента. Поэтому одной из основных задач статистической обработки опытных данных является нахождение таких функций распределения, которые, с одной стороны, достаточно хорошо описывали бы наблюдаемые значения случайной величины, а с другой — были бы удобны для дальнейшего статистического анализа. При этом вид функции распределения предпочтительно выбирать на основе представлений о физической природе рассматриваемого явления, так как в этом случае исключаются возможные погрешности при распространении найденных закономерностей за пределы изучаемого в эксперименте интервала варьирования (изменения) случайной величины (отклика). Из всех изученных к настоящему времени случайных величин при обработке экспериментальных данных исследователи чаще всего оперируют со случайными величинами, которые имеют так называемое нормальное (Гауссово) распределение (см. рис. 1)

Рис.1

 

Не вдаваясь в подробные математические выкладки, отметим, что, согласно центральной предельной теореме математической статистики, «при определенных условиях распределение нормированной суммы n независимых случайных величин, распределенных по произвольному закону, стремится к нормальному, когда n стремится к бесконечности». Необходимые условия, при которых эта теорема оказывается справедливой, состоят в том, что различные случайные величины должны иметь конечные дисперсии и дисперсия любой случайной величины не должна быть слишком большой по сравнению с дисперсиями других. При обработке экспериментальных данных эта теорема имеет очень большое значение, поскольку отклик становится случайной величиной в результате влияния неконтролируемых факторов, число которых скорее всего стремится к бесконечности. Кроме того, если при проведении опытов все наиболее существенные факторы контролируются, то воздействие на отклик каждого из неконтролируемых факторов не должно быть слишком большим по сравнению с остальными неконтролируемыми факторами. Другими словами, та дисперсия (рассеивание) отклика, которую вызывает какой-либо из неконтролируемых факторов, не должна сильно отличаться от дисперсий, связанных с влиянием остальных неконтролируемых факторов. В противном случае фактор, дисперсия от которого существенно отличается от других, обязательно должен быть переведен в разряд контролируемых. Следовательно, если при планировании эксперимента учтены все наиболее существенные факторы и затем, при проведении опытов, они контролируются, то при обработке экспериментальных данных можно предполагать, что отклик не должен противоречить нормальному распределению. Как правило, нормальному закону подчиняются результаты испытаний стали на прочность, производительность многих металлургических агрегатов, составы сырья, топлива, сплавов, массы слитков, отлитых в однотипные изложницы, случайные ошибки измерений и т.п., поэтому при обработке результатов наблюдений исследователи, прежде всего, предполагают именно нормальное распределение отклика. Большинство других распределений, которые используют в математической статистике (Стьюдента, Фишера, Пирсона, Кохрена, а также распределения, по которым составлены различные критериальные таблицы), получены на основе нормального распределения. Нельзя, однако, абсолютизировать значение нормального распределения. Не все случайные величины распределены по нормальному закону. Тем не менее на практике, если явление подвержено действию многих случайных факторов, их суммарное воздействие вполне оправданно можно описать с помощью нормального закона. Как уже было отмечено, для случайной величины, которая не противоречит нормальному закону, функция распределения и соответствующая ей плотность распределения:

 

Отметим некоторые свойства нормального закона распределения:

1. Кривая плотности распределения симметрична относительно значения μ, называемого иногда центром распределения.

2. При бóльших значениях дисперсии кривая f(x) более пологая, т.е. дисперсия является мерой величины рассеивания значения случайной величины около значений μ. При уменьшении параметра дисперсии кривая нормального распределения сжимается вдоль оси ОХ и вытягивается вдоль f(x).

3. Максимум ординаты кривой плотности распределения определяется выражением:

Fmax = 1/√2πσ2

4. Для нормального распределения математическое ожидание, мода, медиана совпадают.

Вопросы по материалам лекции:

1. Что такое случайная величина?

2. В чем заключаются отличия дискретной величины от непрерывной случайной величины? Приведите примеры.

3. Какие вероятностные характеристики используют для описания распределений случайных величин?

3. С какой целью используют законы распределения при обработке данных экспериментальных исследований?

4. Почему нормальный закон распределения наиболее применим в экспериментальной практике?

5. Какие параметры и свойства характерны для нормального закона распределения?



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-05-25 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: